JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Emission Characteristics of Blue Fluorescence Tandem OLED with Materials of CGL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Emission Characteristics of Blue Fluorescence Tandem OLED with Materials of CGL
Kwak, Tea-Ho; Ju, Sung-Hoo;
  PDF(new window)
 Abstract
We investigated emission characteristics of tandem organic light emitting devices (OLEDs) with p-type materials as charge generation layer. The tandem OLEDs were fabricated by using , , C60 and HATCN as p-type material or not using p-type material for charge generation. When HATCN was used as p-type material, it showed high current density at low applied voltage, but increase of efficiency was small because of charge unbalance in emitting layer. In case of tandem OLED not using p-type material, applied voltage increased remarkably because of difficulty of hole injection. In case of , or C60 as p-type material, current emission efficiency increased greatly. In particular, current emission efficiency of tandem OLED using as p-type material increased up to 3 times than current emission efficiency of single OLED. The Commission Internationale de l'Eclairage (CIE) 1931 color coordinates were changed by overlapping of 504 nm emission wavelength. As a result, emission efficiency of tandem OLED improved compared with single OLED, but driving voltage also increased by increase of organic layer thickness.
 Keywords
OLED;Tandem OLED;CGL(Charge Generation Layer);Efficiency;
 Language
Korean
 Cited by
1.
적색과 청색 형광 물질을 사용한 백색 적층 OLED,박찬석;공도훈;강주현;윤성혁;주성후;

한국표면공학회지, 2015. vol.48. 3, pp.115-120 crossref(new window)
1.
White Tandem Organic Light-Emitting Diodes Using Red and Blue Fluorescent Materials, Journal of the Korean institute of surface engineering, 2015, 48, 3, 115  crossref(new windwow)
 References
1.
C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett., 51 (1987) 913. crossref(new window)

2.
J. Clark, G. Lanzani, Nature, 4 (2010) 438.

3.
T. Tsutsui, M. Terai, Appl. Phys. Lett., 84 (2004) 440. crossref(new window)

4.
T. Tsutsui, M. Terai, Appl. Phys. Lett., 90 (2007) 083502. crossref(new window)

5.
Fawen Guo, Dongge Ma, Appl. Phys. Lett., 87 (2005) 173510. crossref(new window)

6.
Ping Chen, Wenfa Xie, Jiang Li, Tao Guan, Yu Duan, Yi Zhao, Shiyong Liu, Chunsheng Ma, Liying Zhang, Bin Li, Appl. Phys. Lett., 91 (2007) 023505. crossref(new window)

7.
Hongmei Zhang, Yanfeng Dai, Dongge Ma, Hongmei Zhang, Appl. Phys. Lett., 91 (2007) 123504. crossref(new window)

8.
Chieh-Wei Chen, Yin-Jui Lu, Chung-Chih Wu, Elbert Hsing-En Wu, Chih-WeiChu, YangYang, Appl. Phys. Lett., 87 (2005) 241121. crossref(new window)

9.
H. Kanno, R.J. Holmes, Y. Sun, S.K. Cohen, S.R. Forrest, Adv. Mater., 18 (2006) 339. crossref(new window)

10.
Mei-Yee Chan, Shiu-Lun Lai, Kit-Ming Lau, Man-Keung Fung, Chun-Sing Lee, Shuit-Tong Lee, Adv. Funct. Mater., 17 (2007) 2509. crossref(new window)

11.
T. Chib, Y. Pu, R. Miyazaki, K. Nakayam, H. Sasabe, J. Kido, Organic Electronics, 12 (2011) 710 crossref(new window)

12.
J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L.Burns, and A.B. Holmes, Nature, 347 (1990) 539 crossref(new window)

13.
T. H. Kwak, S. H. Ju, J. Kor. Inst. Surf. Eng., 47 (2014) 104 crossref(new window)

14.
M. Liu, P. Chen, Q. Xue, F. Jianga, G. Xie, J. Hou, Y. Zhao, L. Zhang, B. Li, Microelectronics Journal, 39 (2008) 1622 crossref(new window)

15.
C. H. Chang, Z. J. Wu, Y. H. Liang, Y. S. Chang, C. H. Chiu, C. W. Tai, H. H. Chang, Thin Solid Films, 548 (2013) 389 crossref(new window)