JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Enhancement of Surface Diffusivity for Waviness Evolution on Heteroepitaxial Thin Films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Enhancement of Surface Diffusivity for Waviness Evolution on Heteroepitaxial Thin Films
Kim, Yun Young;
  PDF(new window)
 Abstract
The present study deals with a numerical analysis on the island growth of heteroepitaxial thin-films through local surface diffusivity enhancement. A non-linear governing equation for the surface waviness evolution in lattice-mismatched material systems is developed for the case of spatially-varying surface diffusivity. Results show that a flat film that is stable under constant diffusivity conditions evolves to form nanostructures upon externally-induced spatial diffusivity modulation. The periodicity of waviness can be controlled by changing the modulation parameters, which allows for generation of pattern arrays. The present study therefore points towards a post-deposition treatment technique that achieves controllability and order in the structure formation process for applications in nanoelectronics and thin-film devices.
 Keywords
heteroepitaxy;thin film;surface diffusivity;instability;
 Language
English
 Cited by
 References
1.
I. N. Stranski and L. Krastanov : Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2B, 146(1938) 797.

2.
S. Oda and D. Ferry : Silicon nanoelectronics, CRC Press, Boca Raton (2006).

3.
T. Markvart and L. Castaner : Solar Cells: Materials, Manufacture and Operation, Elsevier, Amsterdam (2005).

4.
G. Wei and S. R. Forrest : Nano Letters 7 (2007) 218. crossref(new window)

5.
K. A. Sablon, J. W. Little, K. A. Olver, Zh. M. Wang, V. G. Dorogan, Yu. I. Mazur, G. J. Salamo, and F. J. Towner : J. Appl. Phys. 108 (2010) 074305. crossref(new window)

6.
T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano : Appl. Phys. Lett. 97 (2010), 183104. crossref(new window)

7.
Y. Okada, T. Morioka, K. Yoshida, R. Oshima, Y. Shoji, T. Inoue, and T. Kita : J. Appl. Phys. 109 (2011) 024301. crossref(new window)

8.
T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki : Solar Energy Mater. Solar Cells 95 (2011) 163. crossref(new window)

9.
Q. Deng, X. Wang, C. Yang, H. Xiao, C. Wang, H. Yin, Q. Hou, J. Li, Z. Wang, and X. Hou: Physica B 406 (2011) 73. crossref(new window)

10.
S. J. Koh : Nanoscale Res. Lett. 2 (2007), 519. crossref(new window)

11.
C. Dais, H. H. Solak, E. Müller, and D. Grutzmacher : Appl. Phys. Lett. 92 (2008) 143102. crossref(new window)

12.
R. Notzel, N. Sritirawisarn, E. Selcuk, and S. Anantathanasarn: IEEE J. Sel. Top. Quant. Electron. 14 (2008) 1140. crossref(new window)

13.
H. Gao and W. D. Nix : Annu. Rev. Mater. Sci. 29 (1999) 173. crossref(new window)

14.
L. B. Freund : Int. J. Solids Structures 32(1995), 911 crossref(new window)

15.
W. T. Tekalign and B. J. Spencer : J. Appl. Phys. 96 (2004) 5505. crossref(new window)

16.
B. J. Spencer : Phys. Rev. B 59(1999), 2011 crossref(new window)

17.
W. T. Tekalign and B. J. Spencer : J. Appl. Phys. 102 (2007) 073503. crossref(new window)

18.
Y.Y. Kim, Q. Huang, and S. Krishnaswamy: Appl. Phys. Lett. 96 (2010) 123116. crossref(new window)

19.
C. Zhang and R. Kalyanaraman: Appl. Phys. Lett. 83 (2003) 4827. crossref(new window)