JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Effect of Grain Size on the Stress Shift toward Tensile Side by Deposition Interruptions in Copper Thin Films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Effect of Grain Size on the Stress Shift toward Tensile Side by Deposition Interruptions in Copper Thin Films
Lee, Seri; Oh, Seungkeun; Kim, Youngman;
  PDF(new window)
 Abstract
In this study, the average in-situ stress in metallic thin film was measured during deposition of the Cu thin films on the Si(111) wafer and then the phenomenon of stress shift by the interruption of deposition was measured using Cu thin films. We have observed the stress shift in accordance with changing amount of atom's movement between the surface and grain boundary through altering the grain size of the Cu thin film with variety of parameters. The grain size is known to be affected on the deposition rate, film thickness and deposition temperature. As a experimental results, the these parameters was not adequate to explain stress shift because these parameters affect directly on the amount of atom's movement between the surface and grain boundary as well as the grain size. Thus, we have observed the stress shift toward tensile side in accordance with the grain size changing through the interlayer deposition. From an experiment with inserting interlayer before deposit Cu, in thin film which has big grain size with high roughness, amount of stress movement is higher along direction of tensile stress after deposition that means, after deposition process, driving force of atoms moving in grain boundary and on the surface of the film is relatively higher than before.
 Keywords
thin film;in-situ;stress shift;grain size;E-beam Evaporation;
 Language
Korean
 Cited by
 References
1.
R. Abermann, R. Kramer, J. Maser, Thin Solid Films, 52 (1978) 215. crossref(new window)

2.
A. L. Shull, F. Spaepen, J. Appl. Phys., 80 (1996) 6243. crossref(new window)

3.
M. Laugier, 31 (1981) 155.

4.
R. C. Cammarata, T. M. Trimble, D. J. Srolovitz, J. Mater. Res., 15 (2000) 246.

5.
K. Kinosita, K. Maki, K. Nakamiz, K. Takeuchi, Jpn. J. Appl. Phys., 6 (1967) 42. crossref(new window)

6.
R. Abermann, Vacuum 41 (1990) 1279. crossref(new window)

7.
R. Abermann, R. Koch and R. Kramer, Thin Solid Films, 58 (1979) 365. crossref(new window)

8.
R. W. Hoffman, Thin Solid Films, 34 (1976) 185. crossref(new window)

9.
E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, S. J. Hearne, Phys. Rev. Lett., 88 (2003) 156103.

10.
J. W. Shin, E. Chason, Phys. Rev. Lett., 103 (2009) 056102. crossref(new window)

11.
E. Chason, J. W. Shin, J. Hearne and L. B. Freund: J. Appl. Phys., 111 (2012) 083520. crossref(new window)

12.
C. Herzig and S. V. Divinski: Mater. Trans., 44 (2003) 1427.

13.
R. W. Ballufi, Met. Trans. B., 13 (1982) 527553.

14.
G. Neumann, C. Tuijn: Handbook of Experimental Data, Self-Diffusion and Impurity Diffusion in Pure Metals, (Elsevier Ltd., Oxford, UK, 2009).

15.
B. Amin-Ahmadi, H. Idrissi, M. Galceran, M.S. Colla, J. P. Raskin, T. Pardoen, S. Godet, D. Schryvers, Thin Solid Films, 539 (2013) 145. crossref(new window)

16.
Q. Xiao, H. He, S. Sha, J. Shao, Z. Fan, Thin Solid Films 517 (2009) 4295. crossref(new window)

17.
S. Ebrahimiasl, W. M. Z. W. Yunus, A. Kassim, Z. Zainal, Solid State Sciences, 12 (2010) 1323. crossref(new window)

18.
Y. Caoa, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, W. Soboyejo, Materials Science and Engineering: A, 427 (2006) 232. crossref(new window)

19.
Z. An, H. Ding, Q. Meng, Y. Rong, S. Materialia, 61 (2009) 1012. crossref(new window)

20.
N. R. Shamsutdinov, A. J. Bo ttger, F. D. Tichelaar, Scripta Materialia 54 (2006) 1727. crossref(new window)

21.
W. D. Nix, Metall. Trans., A 20 (1989) 2217. crossref(new window)

22.
J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, C. V. Thompson, J. Appl. Phys., 89 (2001) 4886. crossref(new window)

23.
M. A. Phillips, V. Ramaswamy, B.M. Clemens, and W. D. Nix, J. Mater. Res., 15 (2000) 2540. crossref(new window)

24.
B. W. Sheldon, A. Lau, and A. Rajamani, J. Appl. Phys., 90 (2001) 5097. crossref(new window)

25.
G. Gerald Stoney, Proc. R. Soc. Lond. A 82 (1909)

26.
E. Chason, Thin Solid Films, 526 (2012) 1. crossref(new window)

27.
P. Politia, G. Grenete, A. Martyd, A. Ponchetf, Jacques Villainb. Physics Reports. 324 (5)-(6) (2000)

28.
Z. Wu, J. M. Dickey, Thin Solid Films., 371 (2000)