JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Endurance and Compatibility of Silicon Carbide as Fluidized Bed Reactor for Poly-silicon
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Endurance and Compatibility of Silicon Carbide as Fluidized Bed Reactor for Poly-silicon
Choi, Kyoon; Seo, Jin Won; Hahn, Yoon Soo; Son, Min Soo;
  PDF(new window)
 Abstract
In order to utilize silicon carbide (SiC) as an inner part of fluidized bed reactor (FBR) for manufacturing poly-silicon, we have carried out the thermodynamic calculation on the overall reactions including poly-silicon synthesis and compatibility of SiC with FBR process. The resources of silicon included , and and the thermodynamic yield of the FBR with MS, TCS and STC were compared each other with variable range of temperature, pressure and hydrogen to silicon ratio. The silicon yield of MS, TCS and STC were 100%, 28% and 4%, respectively, throughout the conventional FBR conditions. Silicon carbide having high hardness and strength showed strong resistance to granule collisions during the FBR process using a lab-scale reactor. And it also showed quite good compatibility with the typical FBR processes of MS and TCS resources.
 Keywords
CVD;silicon carbide;fluidized bed reactor;thermodynamics;silicon granule;
 Language
Korean
 Cited by
 References
1.
'Photovoltaics Report', from http://www.ise.fraunhofer. de, Freiburg (2014).

2.
'Global Market Outlook for Photovoltaics 2013- 2017', C. Winneker (ed.) published by EPIA (2012).

3.
G. R. Fisher, M. Kulkarni, ECS Trans. 27 (2010) 1001.

4.
H. Y. Kim, Korean Chem. Eng. Res. 46 (2008) 37.

5.
B. Caussat, M. Hemati, and J. P. Couderc, Chem. Eng. Sci. 50 (1995) 3625. crossref(new window)

6.
A. Anselmoa, V. Prasadb, J. Koziolc and K. P. Gupta, J. Cryst. Growth 131 (1993) 247. crossref(new window)

7.
C. Wang, H. Zhang, T. Wang and L. Zheng, J. Cryst. Growth 287 (2006) 252. crossref(new window)

8.
G. Byea, and B. Ceccaroli, Solar Energy Mater. Solar Cells 130 (2014) 634. crossref(new window)

9.
K. S. Cho, S. H. Yoon, H. Chung, S. H. Chae, K. Y. Lim, Y. W. Kim, and S. H. Park, Ceramist 10 (2007) 33.

10.
M. R. Jang, Y. K. Paek, S. M. Lee, J. Kor. Ceram. Soc. 49 (2012) 328. crossref(new window)

11.
K. Choi and J. W. Kim, Current Nanoscience 10 (2014) 135. crossref(new window)

12.
J. W. Kim, J. W. Seo, K. Choi and J. H. Lee, J. Kor. Soc. Comp. Fluids Eng. 18 (2013) 45.

13.
G. Chichignoud, M. Ucar-Morais, M. Pons, and E. Blanquet, Surf. Coat. Tech. 201 (2007) 8888. crossref(new window)

14.
Z. Y. Xie, C. H. Wei, L. Y. Li, Q. M. Yu, and J. H. Edgar, J. Cryst. Growth 217 (2000) 115. crossref(new window)

15.
C. Hallin, F. Owman, P. Martensson, A. Ellison, A. Konstantinov, O. Kordina and E. Janzen, J. Cryst. Growth 181 (1997) 141.