JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Emission Characteristics of Multi-Tandem OLED using MoOx with CGL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Emission Characteristics of Multi-Tandem OLED using MoOx with CGL
Kim, Ji-Hyun; Ju, Sung-Hoo;
  PDF(new window)
 Abstract
We studied emission characteristics of blue fluorescent multi-tandem OLEDs using as charge generation layer(CGL). Threshold voltage for 2, 3, 4, and 5 units tandem OLEDs was 8, 11, 14 and 18 V, respectively. The threshold voltage in multi-tandem OLEDs was lower than multiple of 4 V for the single OLED. Maximum current efficiency and maximum quantum efficiency of single OLED were 7.6 cd/A and 5.5%. Maximum current efficiency for 2, 3, 4, and 5 units tandem OLEDs was 22.6, 31.4, 41.2, and 46.6 cd/A, respectively. Maximum quantum efficiency for 2, 3, 4, and 5 units tandem OLEDs was 11.8, 15.8, 21.8, and 25.6%, respectively. The maximum current efficiency and maximum quantum efficiency in multi-tandem OLEDs were higher than multiple of those for the single OLED. The intensity for 508 nm peak was changed and the peak wavelength was red shift by increase of tandem unit in electroluminescent emission spectra. These phenomena can be caused by micro-cavity effect with increasing of organic layer thickness.
 Keywords
OLED;Tandem;CGL(Charge Generation Layer);Fluorescence;Efficiency;
 Language
Korean
 Cited by
1.
Emission Characteristics of White Tandem Organic Light Emitting Diodes Using Blue and Red Phosphorescent Materials, Journal of the Korean institute of surface engineering, 2016, 49, 2, 196  crossref(new windwow)
 References
1.
C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett., 51 (1987) 913. crossref(new window)

2.
J. Clark, G. Lanzani, Nature, 4 (2010) 438.

3.
T. Tsutsui, M. Terai, Appl. Phys. Lett., 84 (2004) 440. crossref(new window)

4.
T. Tsutsui, M. Terai, Appl. Phys. Lett., 90 (2007) 083502. crossref(new window)

5.
Fawen Guo, Dongge Ma, Appl. Phys. Lett., 87 (2005) 173510. crossref(new window)

6.
Ping Chen, Wenfa Xie, Jiang Li, Tao Guan, Yu Duan, Yi Zhao, Shiyong Liu, Chunsheng Ma, Liying Zhang, Bin Li, Appl. Phys. Lett., 91 (2007) 023505. crossref(new window)

7.
P. S. Vincentt, W. A. Barlow, R. A. Hann, G. G.Roberts, Thin Solid Film, 94 (1982) 171. crossref(new window)

8.
R. H. Partridge, Polymer, 24 (1983) 748. crossref(new window)

9.
C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51 (1987) 913. crossref(new window)

10.
T. Chiba, Y. J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, J. Kido, Organic Electronics, 12 (2011) 710. crossref(new window)

11.
T. H. Kwak, S. H. Ju, J. Kor. Inst. Surf. Eng., 47 (2014) 104. crossref(new window)

12.
M. Liu, P. Chen, Q. Xue, F. Jianga, G. Xie, J. Hou, Y. Zhao, L. Zhang, B. Li, Microelectronics Journal, 39 (2008) 1622. crossref(new window)

13.
C. H. Chang, Z. J. Wu, Y. H. Liang, Y. S. Chang, C. H. Chiu, C. W. Tai, H. H. Chang, Thin Solid Films, 548 (2013) 389. crossref(new window)

14.
T. Chib, Y. Pu, R. Miyazaki, K. Nakayam, H. Sasabe, J. Kido, Organic Electronics, 12 (2011) 710. crossref(new window)

15.
Peng, H., Sun, J., Zhu, X., Yu, X., Wong, M., and Kwok, H.-S., Appl. Phys. Lett., 88 (2006) 073517. crossref(new window)

16.
Wu, C. C., Hsieh, P. Y., Lin, C. L., and Chiang, H. H., Appl. Phys. Lett., 84 (2004) 3966. crossref(new window)

17.
Chang, C.-H., Cheng, H.-C., Lu, Y.-J., Tien, K.-C., Lin, H.-W., Lin, C.-L., Yang, C.-J., and Wu, C.- C., Org. Electron., 11 (2010) 247. crossref(new window)