Advanced SearchSearch Tips
Corrosion Properties of Carbon-Coated Metallic Bipolar Plate for PEMFC
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Corrosion Properties of Carbon-Coated Metallic Bipolar Plate for PEMFC
Jang, Dong-Su; Lee, Jung-Joong;
  PDF(new window)
Carbon thin films were deposited on STS 316L sheets by inductively coupled plasma enhanced magnetron sputtering with or without substrate bias voltage. Typical Raman spectrum for amorphous diamond-like carbon (DLC) was obtained, and the interfacial contact resistance (ICR) was measured to show its conductive nature. The electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion mechanism of the carbon coating under the polymer electrolyte membrane fuel cell (PEMFC) condition. According to the pore-corrosion mechanism, the electrolyte penetrates the carbon coating through the pores and reacts with the substrate. As the substrate corrosion proceeds, the pore enlargement occurs and the surface area of the substrate exposed to the electrolyte. Applicability of the carbon coating for the PEMFC bipolar plate was evaluated by potentiodynamic polarization experiments. Finally, an adhesion problem was briefly considered.
Carbon film;Sputtering;Bipolar plate;PEMFC;EIS;Corrosion;Porosity;ICR;
 Cited by
Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods, Corrosion Science and Technology, 2016, 15, 2, 92  crossref(new windwow)
R. A. Antunes, M. C. L. Oliveira, G. Ett, V. Ett, Int. J. Hydrogen Energy 35 (2010) 3632. crossref(new window)

W. Hong, D. H. Han, H. Choi, M. W. Kim, J. J. Lee, Int. J. Hydrogen Energy 36 (2011) 2207. crossref(new window)

K. Feng, T. Hu, X. Cai, Z. Li, P. K. Chu, J. Power Sources 199 (2012) 207. crossref(new window)

W. Yoon, X. Huang, P. Fazzino, K. L. Reifsnider, M. A. Akkaoui : J. Power Sources 179 (2008) 265. crossref(new window)

H. S. Choi, D. H. Han, W. H. Hong, J. J. Lee, J. Power Sources 189 (2009) 966. crossref(new window)

N. D. Nam, M. J. Kim, D. S. Jo, J. G. Kim, and D. H. Yoon : Thin Solid Films 545 (2013) 380. crossref(new window)

L. Wang, D. O. Northwood, X. Nie, J. Housden, E. Spain, A. Leyland, and A. Matthews : J. Power Sources 195 (2010) 3814. crossref(new window)

S. Y. Kim, D. H. Han, J. N. Kim, J. J. Lee, J. Power Sources 193 (2009) 570. crossref(new window)

D. P. Davies, P. L. Adcock, M. Turpin, S. J. Rowen, J. Appl. Electrochem. 30 (2000) 101. crossref(new window)

H. Wang, M. A. Sweikart, J. A. Turner, J. Power Sources 115 (2003) 243. crossref(new window)

I. D. Raistrick, D. R. Franceschetti, J. Ross Macdonald, Impedance spectroscopy : Theory, Experiment, and Applications, 2nd, Barsoukov E, J. Ross Macdonald (Ed.), John Wiley & Sons, Canada (2005) 90.

S. C. Seo, D. C. Ingram, H. H. Richardson, J. Vac. Sci. Technol. A 13 (1995) 2856. crossref(new window)

A. Kumar, M. Ricketts, S. Hirano, J. Power Sources 195 (2010) 1401. crossref(new window)

V. V. Strelko, N. T. Kartel, I. N. Dukhno, V. S. Kuts, R. B. Clarkson, B. M. Odintsov, Surf. Sci. 548 (2004) 281. crossref(new window)

J. Y. Chen, G. P. Yu, J. H. Huang, Mater. Chem. Phys. 65 (2000) 310. crossref(new window)