Advanced SearchSearch Tips
Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of NbN Coatings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of NbN Coatings
Chun, Sung-Yong;
  PDF(new window)
NbN coatings were prepared by ICP (inductively coupled plasma) assisted magnetron sputtering from a Nb metal target in atmosphere at various ICP powers. Effect of ICP on the microstructure, crystalline structure and mechanical properties of NbN coatings was investigated by field emission electron microscopy, X-ray diffraction, atomic force microscopy and nanoindentation measurements. The results show that ICP power has a significant influence on coating microstructure, structure and mechanical properties of NbN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Crystalline structure of NbN coatings were changed from cubic -NbN to hexagonal with increase of ICP power. The maximum nano hardness of 25.4 GPa with Ra roughness of 0.5 nm was obtained from the NbN coating sputtered at ICP power of 200 W.
Inductively Coupled Plasma;NbN coatings;Roughness;Structure;Morphology;
 Cited by
유도결합 플라즈마 파워가 VN 코팅막의 미세구조, 결정구조 및 기계적 특성에 미치는 영향에 관한 연구,전성용;이소연;

한국표면공학회지, 2016. vol.49. 4, pp.376-381 crossref(new window)
Properties of VN Coatings Deposited by ICP Assisted Sputtering: Effect of ICP Power, Journal of the Korean Ceramic Society, 2017, 54, 1, 38  crossref(new windwow)
Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of VN Coatings, Journal of the Korean institute of surface engineering, 2016, 49, 4, 376  crossref(new windwow)
S. Y. Chun, S. C. Kim, J. Kor. Inst. Surf. Eng., 46 (2013) 261.

H. H. Jin, J. W. Kim, K. H. Kim, and S. Y. Yoon, J. Kor. Ceram. Soc., 42 (2005) 88. crossref(new window)

U. Diebold, Surf. Sci. Rep., 48 (2003) 53. crossref(new window)

M. Aliofkhazraei, N. Ali, Comprehensive Materials Processing, 7 (2014) 49.

A. S. H. Makhlouf, Nanocoatings and Ultra-Thin Films, Woodhead Publishing Limited, pp. 159-181 (2011).

M. Lilja, K. Welch, M. Astrand, H. Engqvist, M.Stromme, J. Biomedical Mater. Res. B., 100 [4] 1078 (2012).

Y. X. Leng, N. Huang, P. Yang, J. Y. Chen, H. Sun, J. Wang, G. J. Wan, X. B. Tian, R. K. Y. Fu, L. P. Wang, P. K. Chu," Surf. Coat. Technol., 156 (2002) 295. crossref(new window)

Y. X. Leng , N. Huang , P. Yang , J. Y. Chen , H. Sun , J. Wang , G. J. Wan , Y. Leng , P. K. Chu, Thin Solid Films, 420-421 (2002) 408. crossref(new window)

M. Bowes, J. W. Bradley, Surf. Coat. Technol., 250 (2014).

J. Musil, J. Vlcek, Surf. Coat. Technol., 112 (1999) 162. crossref(new window)

B. M. Koo, S. J. Jung, Y. H. Han, J. J. Lee, J. H. Joo, J. Kor. Inst. Surf. Eng., 37 (2004) 146.

J. J. Lee, J. H. Joo, Surf. Coat. Technol., 169-170 (2003) 353. crossref(new window)

G. S. Fox-Rabinovich, G. C. Weatherly, A. I. Dodonov, A. I. Kovalev, L. S. Shuster, S. C. Veldhuis, G. K. Dosbaev, D. L. Wainstein, M. S. Migranov, Surf. Coat. Technol., 177-178 (2004) 800. crossref(new window)

D. Cullity, S. R. Stock, Element of X-ray Diffraction, Prentice-Hall Inc., 3rd, pp. 167 (2001).

N. Maazi, N. Rouag, J. Cryst. Growth, 243 (2002) 361. crossref(new window)

A. Anders, "Atomic Scale Heating in Cathodic Arc Plasma Deposition,"Appl. Phys. Lett., 80 (2002) 1100. crossref(new window)

M. Wen, Q.N. Meng, C.Q. Hu, T. An, Y.D. Su, W.X. Yu, W.T. Zheng, Surf. Coat. Technol., 203 (2009) 1702. crossref(new window)

C. S. Sandu, M. Benkahoul, M. Parlinska-Wojtan, R. Sanjines, F. Levy, Surf. Coat. Technol., 200 (2006) 6544. crossref(new window)

D. H. Seo, S. Y. Chun, J. Kor. Inst. Surf. Eng., 45 (2012) 123. crossref(new window)