JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of NbN Coatings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of NbN Coatings
Chun, Sung-Yong;
  PDF(new window)
 Abstract
NbN coatings were prepared by ICP (inductively coupled plasma) assisted magnetron sputtering from a Nb metal target in atmosphere at various ICP powers. Effect of ICP on the microstructure, crystalline structure and mechanical properties of NbN coatings was investigated by field emission electron microscopy, X-ray diffraction, atomic force microscopy and nanoindentation measurements. The results show that ICP power has a significant influence on coating microstructure, structure and mechanical properties of NbN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Crystalline structure of NbN coatings were changed from cubic -NbN to hexagonal with increase of ICP power. The maximum nano hardness of 25.4 GPa with Ra roughness of 0.5 nm was obtained from the NbN coating sputtered at ICP power of 200 W.
 Keywords
Inductively Coupled Plasma;NbN coatings;Roughness;Structure;Morphology;
 Language
Korean
 Cited by
1.
Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of VN Coatings, Journal of the Korean institute of surface engineering, 2016, 49, 4, 376  crossref(new windwow)
 References
1.
S. Y. Chun, S. C. Kim, J. Kor. Inst. Surf. Eng., 46 (2013) 261.

2.
H. H. Jin, J. W. Kim, K. H. Kim, and S. Y. Yoon, J. Kor. Ceram. Soc., 42 (2005) 88. crossref(new window)

3.
U. Diebold, Surf. Sci. Rep., 48 (2003) 53. crossref(new window)

4.
M. Aliofkhazraei, N. Ali, Comprehensive Materials Processing, 7 (2014) 49.

5.
A. S. H. Makhlouf, Nanocoatings and Ultra-Thin Films, Woodhead Publishing Limited, pp. 159-181 (2011).

6.
M. Lilja, K. Welch, M. Astrand, H. Engqvist, M.Stromme, J. Biomedical Mater. Res. B., 100 [4] 1078 (2012).

7.
Y. X. Leng, N. Huang, P. Yang, J. Y. Chen, H. Sun, J. Wang, G. J. Wan, X. B. Tian, R. K. Y. Fu, L. P. Wang, P. K. Chu," Surf. Coat. Technol., 156 (2002) 295. crossref(new window)

8.
Y. X. Leng , N. Huang , P. Yang , J. Y. Chen , H. Sun , J. Wang , G. J. Wan , Y. Leng , P. K. Chu, Thin Solid Films, 420-421 (2002) 408. crossref(new window)

9.
M. Bowes, J. W. Bradley, Surf. Coat. Technol., 250 (2014).

10.
J. Musil, J. Vlcek, Surf. Coat. Technol., 112 (1999) 162. crossref(new window)

11.
B. M. Koo, S. J. Jung, Y. H. Han, J. J. Lee, J. H. Joo, J. Kor. Inst. Surf. Eng., 37 (2004) 146.

12.
J. J. Lee, J. H. Joo, Surf. Coat. Technol., 169-170 (2003) 353. crossref(new window)

13.
G. S. Fox-Rabinovich, G. C. Weatherly, A. I. Dodonov, A. I. Kovalev, L. S. Shuster, S. C. Veldhuis, G. K. Dosbaev, D. L. Wainstein, M. S. Migranov, Surf. Coat. Technol., 177-178 (2004) 800. crossref(new window)

14.
D. Cullity, S. R. Stock, Element of X-ray Diffraction, Prentice-Hall Inc., 3rd, pp. 167 (2001).

15.
N. Maazi, N. Rouag, J. Cryst. Growth, 243 (2002) 361. crossref(new window)

16.
A. Anders, "Atomic Scale Heating in Cathodic Arc Plasma Deposition,"Appl. Phys. Lett., 80 (2002) 1100. crossref(new window)

17.
M. Wen, Q.N. Meng, C.Q. Hu, T. An, Y.D. Su, W.X. Yu, W.T. Zheng, Surf. Coat. Technol., 203 (2009) 1702. crossref(new window)

18.
C. S. Sandu, M. Benkahoul, M. Parlinska-Wojtan, R. Sanjines, F. Levy, Surf. Coat. Technol., 200 (2006) 6544. crossref(new window)

19.
D. H. Seo, S. Y. Chun, J. Kor. Inst. Surf. Eng., 45 (2012) 123. crossref(new window)