JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Heat Spreading Properties of CVD Diamond Coated Al Heat Sink
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Heat Spreading Properties of CVD Diamond Coated Al Heat Sink
Yoon, Min Young; Im, Jong Hwan; Kang, Chan Hyoung;
  PDF(new window)
 Abstract
Nanocrystalline diamond(NCD) coated aluminium plates were prepared and applied as heat sinks for LED modules. NCD films were deposited on 1 mm thick Al plates for times of 2 - 10 h in a microwave plasma chemical vapor deposition reactor. Deposition parameters were the microwave power of 1.2 kW, the working pressure of 90 Torr, the gas ratio of 2/200 sccm. In order to enhance diamond nucleation, DC bias voltage of -90 V was applied to the substrate during deposition without external heating. NCD film was identified by X-ray diffraction and Raman spectroscopy. The Al plates with about 300 nm thick NCD film were attached to LED modules and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. Thermal resistance of the module with NCD/Al plate was 3.88 K/W while that with Al plate was 5.55 K/W. The smaller the thermal resistance, the better the heat emission. From structure function analysis, the differences between junction and ambient temperatures were for NCD/Al plate and for Al plate. The hot spot size of infrared images was larger on NCD/Al than Al plate for a given period of LED operation. In conclusion, NCD coated Al plate exhibited better thermal spreading performance than conventional Al heat sink.
 Keywords
Nanocrystalline diamond;Heat sink;Thermal resistance;Junction temperature;
 Language
Korean
 Cited by
1.
Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube, Journal of the Korean institute of surface engineering, 2016, 49, 2, 218  crossref(new windwow)
 References
1.
R. C. Eden, in Handbook of Industrial Diamonds and Diamond Films, (Eds: M. A. Prelas, G. Popovici, L. K. Biglow), Marcel Dekker, Inc., N.Y. (1997) 1073.

2.
K. Jagannadham, Solid-State Electronics 42 (1998) 2199. crossref(new window)

3.
D. M. Gruen, Annu. Rev. Mater. Sci. 29 (1999) 211. crossref(new window)

4.
J. E. Butler, A. V. Sumant, Chem. Vap. Deposition 14 (2008) 145. crossref(new window)

5.
O. Auciello, A. V. Sumant, Diamond Relat. Mater. 19 (2010) 699. crossref(new window)

6.
Y. Qi, L. G. Hector, Jr., Phys. Rev. B. 69 (2004) 235401. crossref(new window)

7.
H. Guo, Y. Qi, X. Li, J. Appl. Phys. 107 (2010) 033722. crossref(new window)

8.
S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036. crossref(new window)

9.
B. R. Stoner, G.-H. Ma, S. D. Wolter, J. T. Glass, Phys. Rev. B, 45B (1992) 11057.

10.
I. -S. Kim, C. H. Kang, J. Kor. Inst. Surf. Eng. 46 (2013) 29. crossref(new window)

11.
Mentor Graphics T3ster, http://www.mentor.com/products/mechanical/micred/t3ster/?sfm=auto_suggest 2015. 09. 12.

12.
Timage IR Pro+, http://guideinfrared.com/Plus/m_default/Cms/docDetail.php?ID=60 2015. 09. 12.

13.
P. K. Chu, L. Li, Mater. Chem. Phys. 96 (2006) 253. crossref(new window)

14.
D. Y. Jung, C. H. Kang, J. Kor. Inst. Surf. Eng. 44 (2011) 131. crossref(new window)

15.
B.-K. Na, C. H. Kang, J. Kor. Inst. Surf. Eng. 46 (2013) 68. crossref(new window)

16.
D.-B. Park, J.-W. Myung, B.-K. Na, C. H. Kang, J. Kor. Inst. Surf. Eng. 46 (2013) 145. crossref(new window)

17.
J.-W. Myung, C. H. Kang, J. Kor. Inst. Surf. Eng. 47 (2014) 75. crossref(new window)

18.
J. H. Im, C. H. Kang, J. Kor. Inst. Surf. Eng. 47 (2014) 263. crossref(new window)

19.
Y. S. Li, Y. Tang, Q. Yang, J. Maley, R. Sammynaiken, T. Regier, C. Xiao, A. Hirose, Appl. Mater. Interf. 2 (2010) 335. crossref(new window)

20.
Y. Tang, Y. S. Li, Q. Yang, A. Hirose, Diamond Relat. Mater. 19 (2010) 496. crossref(new window)

21.
X. J. Li, L. L. He, Y. S. Li, Q. Yang, A. Hirose, Diamond Relat. Mater. 50 (2014) 103. crossref(new window)