JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Cavitation Damage Behavior of Inconel 625 Coating Layer by Arc Thermal Spraying Method in Sea Water
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Cavitation Damage Behavior of Inconel 625 Coating Layer by Arc Thermal Spraying Method in Sea Water
Park, Il-Cho; Kim, Seong-Jong;
  PDF(new window)
 Abstract
In this paper, arc thermal spray coating was conducted onto the SS400 steel using Inconel 625 wires in order to improve the durability of marine steel structures, and then investigated cavitation damage behavior of Inconel 625 coating layer in sea water. For the Inconel 625 coating layer, surface hardness appeared similar to that of existing high velocity oxy-fuel coating technology with 380~480 HV, but the porosity of about 6 % was larger relatively. During the cavitation experiment, pit damages were originated and grown at the rough surface and pore defect area of Inconel 625 coating layer. And, after the 72 hours of experimental time, weight loss of Inconel 625 coating layer exhibited gradually increasing tendency due to surface damage effect of the undercut.
 Keywords
Inconel 625;arc thermal spray;cavitation;sea water;
 Language
Korean
 Cited by
1.
Electrochemical Characteristics of Arc Thermal Sprayed Inconel 625 Coating on SS400 Steel in Seawater, Journal of the Korean institute of surface engineering, 2016, 49, 2, 172  crossref(new windwow)
 References
1.
H. Y. Al-Fadhli, J. Stokes, M. S. J.Hashmi, B. S. Yilbas, Surf. Coat. Technol. 200 (2006) 5782. crossref(new window)

2.
G. Bolelli, L. Lusvarghi, R. Giovanardi, Surf. Coat. Technol. 202 (2008) 4793. crossref(new window)

3.
D. A. Walsha, L. E. Li, M. S. Bakareb, K. T. Voisey, Electrochim. Acta 54 (2009) 4647. crossref(new window)

4.
V. Higuera, F. Belzunce, A. Carriles, S. Poveda, J. Mater. Sci. 37 (2002) 649. crossref(new window)

5.
L. Gil, M. Staia, J. Surf. Eng. 18 (2002) 309. crossref(new window)

6.
L. Pawlowski, The science and engineering of thermal spray coatings, 2nd ed., John Wiley & Sons, (2008) 79.

7.
J. S. Kim, J. H. Han, H. P. Kim, Y. S. Lim, D. H. Lee, S. S. Hwang, D. H. Hur, Corros. Sci. Technol. 1 (2002) 320.

8.
T. O. Kim, Y. K. Park, J. M. Yoon, Y. S. Song, J. Kor. Inst. Surf. Eng. 33 (2000) 329.

9.
P. Poza, C. J. Munez, M. A. Garrido-Maneiro, S. Vezzu, S. Rech, A. Trentin, Surf. Coat. Technol. 243 (2014) 51. crossref(new window)

10.
A. A. Boudi, M. S. J. Hashmi, B. S. Yilbas, J. Mater. Process. Technol. 173 (2006) 44. crossref(new window)

11.
A. A. Boudi, M. S. J. Hashmi, B. S. Yilbas, J. Mater. Process. Technol. 155-156 (2004) 2051. crossref(new window)

12.
S. J. KIM, S. J. LEE, Trans. Nonferrous Met. Soc. China 21 (2011) 2798. crossref(new window)

13.
K. M. Moon, J. H. Shin, M. H. Lee, S. Y. Lee, Y. H. Kim, J. Korean Soc. of Marine Engineering, 34 (2010) 670. crossref(new window)

14.
H. M. Hawthorne, B. Arsenault, J. P. Immarigeon, J. G. Legoux, V. R. Parameswaran, Wear 225-229 (1999) 825. crossref(new window)

15.
H. Y. Al-Fadhli, J. Stokes, M. S. J. Hashmi, B. S. Yilbas, Surf. Coat. Technol. 200 (2006) 5782. crossref(new window)

16.
M. S. Han, M. S. Kim, S. K. Jang, S. J. Kim, Corros. Sci. Technol. 11 (2012) 263. crossref(new window)

17.
S. Matthew, B. James, M. Hyland, Corros. Sci. 70 (2013) 203. crossref(new window)

18.
J. H. Hwang, U. J. Lim, J. Korean Soc. Fish. Technol. 32 (1996) 302.