Advanced SearchSearch Tips
Effect of the Mg Ion Containing Oxide Films on the Biocompatibility of Plasma Electrolytic Oxidized Ti-6Al-4V
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of the Mg Ion Containing Oxide Films on the Biocompatibility of Plasma Electrolytic Oxidized Ti-6Al-4V
Lee, Kang; Choe, Han-Cheol;
  PDF(new window)
In this study, we prepared magnesium ion containing oxide films formed on the Ti-6Al-4V using plasma electrolytic oxidation (PEO) treatment. Ti-6Al-4V surface was treated using PEO in Mg containing electrolytes at 270V for 5 min. The phase, composition and morphology of the Mg ion containing oxide films were evaluated with X-ray diffraction (XRD), Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and filed-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometer (EDS). The biocompatibility of Mg ion containing oxide films was evaluated by immersing in simulated body fluid (SBF). According to surface properties of PEO films, the optimum condition was formed when the applied was 270 V. The PEO films formed in the condition contained the properties of porosity, anatase phase, and near 1.7 Ca(Mg)/P ratio in the oxide film. Our experimental results demonstrate that Mg ion containing oxide promotes bone like apatite nucleation and growth from SBF. The phase and morphologies of bone like apatite were influenced by the Mg ion concentration.
Biocompatibility;Plasma electrolytic oxidation;Magnesium;Bone like apatite;
 Cited by
T. Albrektsson, P. I. Branemark, H. A. Hansson, J. Lindstrom, Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man, Acta Orthop. Scand, 52 (1981) 155-170. crossref(new window)

C. Yao, T. J. Webster, Anodization: a promising nano-modification technique of titanium implants for orthopedic applications, J. Nanosci. Nanotechnol, 6 (2006) 2682-2692. crossref(new window)

B. D. Ratner, Titanium in medicine: material science, surface science, engineering, biological responses and medical application, Springer, Berlin, (2001) 10.

M. P. Thomsen, A. S. Eriksson, R. Olsson, L. M. Bjursten, P. I. Branemark, L. E. Ericson, Morphological studies on titanium implant inserted in rabbit knee-joint, Adv. Biomater, 7 (1987) 87-92.

K. D. Groot, R. G. T. Geesink, C. P. A. T. Klein, P. Serekian, Plasma sprayed coatings of hydroxyapatite, J. Biomed. Mater. Res, (1987) 7, 1375-1381.

Y. H. Jeong, W. G. Kim, H. C. Choe, Electrochemical behavior of nano and femtosecond laser textured titanium alloy for implant surface modification, J. Nanosci. Nanotechnol, 11 (2011) 1581-1584. crossref(new window)

K. Lee, B. H. Moon, Y. G. Ko, H. C. Choe, Transmission elecrtron microscopy application for the phenomena of hydroxyapatite precipitation in micropore-structured Ti alloy, Surf. Interface Anal, 44 (2012) 1492-1496. crossref(new window)

S. Stojadinovic, R. Vasilic, M. Petkovic, B. Kasalica, I. Belca, A. Zekic, L. J. Zekovic, Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate, Appl. Surf. Sci, 265 (2013) 226-233. crossref(new window)

S. Durdu, S. Bayramoglu, A. Demirtas, M. Usta, A.H. Ucisik, Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation, Vacuum, 88 (2013) 130-133. crossref(new window)

A. Polat, M. Makaraci, M. Usta, Influence of sodium silicate concentration on structural and tribological properties of micro arc oxidation coatings on 2017A aluminum alloy substrate, J. Alloys Compd, 504 (2010) 519-526. crossref(new window)

A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Charaterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surf. Coat. Tech, 130 (2000) 195-206. crossref(new window)

K. H. Nan, T. Wu, J.H. Chen, S. Jiang, Y. Huang, G.X. Pei, Strontium doped hydroxyapatite film formed by micro-arc oxidation, Mater. Sci. Eng. C, 29 (2009) 1554-1558. crossref(new window)

W. H. Song, Y. K. Jun, Y. Han, S. H. Hong, Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials, 25 (2004) 3341-3349. crossref(new window)

S. Durdu, O. F. Deniz, I. Kutbay, M. Usta, Characterization and formation of hydroxyapatite on Ti-6Al-4V coated by plasma electrolytic oxidation, J. Alloys Compd, 551 (2013) 422-429. crossref(new window)

M. S. Kim, J. J. Ryu, Y. M. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem. Commun, 9 (2007) 1886-1891. crossref(new window)

T. Hanawa, Biofunctionalization of titanium for dental implant, Jpn. Dent. Sci. Rev, 46 (2010) 93-101. crossref(new window)

Y. M. Ko, K. Lee, B. H. Kim, Effect of Mg ion on formation of bone-like apatite on the plasma modified titanium surface, Surf. Coat. Tech, 228 (2013) S404-S407. crossref(new window)

R. C. Barik, J. A. Wharton, R. J. K. Wood, K. R. Stokes, R. L. Jones, Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited $Al_2O_3$ coatings, Surf. Coat. Tech, 199 (2005) 158-167. crossref(new window)

K. S. TenHuisen, P. W. Brown, Effects of magnesium on the formation of calcium-deficient hydroxyapatite form $CaHPO_4$.$2H_2O$ and $Ca_4(PO_4)_2O$, J. Biomed. Mater. Res, 36 (1997) 306-314. crossref(new window)

M. T. Pham, M. F. Maitz, W. Matz, H. Reuther, E. Richter, G. Steiner, Promoted hydroxyapatite nucleation on titanium ion-implanted with sodium, Thin Solid Films, 379 (2000) 50-56. crossref(new window)

M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27, (2006) 1728-1734. crossref(new window)

P. N. De Aza, F. Gutian, A. Merlos, E. Lora-Tamayo, S. De Aza, Bioceramic-simulated body fluid interfaces: pH and its influence of hydroxyapatite formation, J. Mater. Sci., Mater. Med, 7 (1996) 399-402. crossref(new window)