JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Plasma Treatment on Contact Resistance and Sheet Resistance of Graphene FET
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Plasma Treatment on Contact Resistance and Sheet Resistance of Graphene FET
Ra, Chang-Ho; Choi, Min Sup; Lee, Daeyeong; Yoo, Won Jong;
  PDF(new window)
 Abstract
We investigated the effect of capacitively coupled Ar plasma treatment on contact resistance () and channel sheet resistance () of graphene field effect transistors (FETs), by varying their channel length in the wide range from 200 nm to which formed the transfer length method (TLM) patterns. When the Ar plasma treatment was performed on the long channel () graphene FETs for 20 s, decreased from 2.4 to . It is understood that this improvement in is attributed to the formation of bonds and dangling bonds by the plasma. However, when the channel length of the FETs decreased down to 200 nm, the drain current () decreased upon the plasma treatment because of the significant increase of channel which was attributed to the atomic structural disorder induced by the plasma across the transfer length at the edge of the channel region. This study suggests a practical guideline to reduce using various plasma treatments for the sensitive graphene and other 2D material devices, where is traded off with .
 Keywords
Graphene;Plasma;Contact resistance;Sheet resistance;Field effect transistor;
 Language
English
 Cited by
 References
1.
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun., 146 (2008) 351-355. crossref(new window)

2.
J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, Two Dimensional Phonon Transport in Supported Graphene, Science, 328 (2010) 213-216. crossref(new window)

3.
K. N. Parrish, D. Akinwande, Impact of contact resistance on the transconductance and linearity of graphene transistors, Appl. Phys. Lett., 98 (2011) 183505. crossref(new window)

4.
J. A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R.Cavalero, D. Snyder, Contacting graphene, Appl. Phys. Lett., 98 (2011) 053103. crossref(new window)

5.
W. Liu, J. Wei, X. Sun, H. Yu, A study on graphene-metal contact, Crystals, 3 (2013) 257-274. crossref(new window)

6.
A. Hsu, H. Wang, K. K. Kim, J. Kong, T. Palacios, Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance, IEEE Electron Device Lett., 32 (2011) 8, 1008-1010. crossref(new window)

7.
W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. Hight Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, X. Liang, Ultraviolet/ozone treatment to reduce metalgraphene contact resistance, Appl. Phys. Lett., 102 (2013) 1831110. crossref(new window)

8.
W. Chen, C. Ren, F. Chi, G.-C. Hung, S.-C. Huang, Y. P. Kim, J. Kravchenko, S. J. Pearton, UV ozone treatment for improving contact resistance on graphene, J. Vac. Sci. Technol. B., 30 (2012) 060604. crossref(new window)

9.
Y. D. Lim, D.Y. Lee, T.Z. Shen, C.H. Ra, J.Y. Choi, W. J. Yoo, Si-compatible cleaning process for graphene using low-density inductively coupled plasma, ACS Nano, 6 (2012) 4410-4417. crossref(new window)

10.
M. S. Choi, S. H. Lee, W. J. Yoo, Plasma treatments to improve metal contacts in graphene field effect transistor, J. Appl. Phys., 110 (2011) 073305. crossref(new window)

11.
S. Gahng, C. H. Ra, Y. J. Cho, J. A. Kim, T. Kim, W. J. Yoo, Reduction of metal contact resistance of graphene devices via CO2 cluster cleaning, Appl. Phys. Lett., 104 (2014) 223110. crossref(new window)

12.
C. Gong, S. McDonnell, X. Qin, A. Azcatl, H. Dong, Y. J. Chabal, Kyeongjae Cho, R. M. Wallace, Realistic metal-graphene contact structures, ACS Nano, 8 (2014) 642-649. crossref(new window)

13.
D. W. Yue, C. H. Ra, X. C. Liu, D. Y. Lee, W. J. Yoo, Edge contacts of graphene formed by using a controlled plasma treatment, Nanoscale, 7 (2015) 825-831. crossref(new window)

14.
K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Metal/Graphene Contact as a Performance Killer of Ultra-high Mobility Graphene - Analysis of Intrinsic Mobility and Contact Resistance , IEEE International Electron Devices Meeting, (2009) 565-568.

15.
K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Contact resistivity and current flow path at metal/graphene contact, Appl. Phys. Lett., 97 (2010) 143514. crossref(new window)

16.
K. Nagashio, A. Toriumi, DOS-limited contact resistance in graphene FETs, Jpn. J. Appl. Phys., 50 (2011) 070108. crossref(new window)

17.
F. Xia, V. Perebeinos, Yu-ming Lin, Y. Wu, P. Avouris, The origins and limits of metal-graphene junction resistance, Nat. Nanotech., 6 (2011) 179-184. crossref(new window)

18.
F. Ahmed, M. S. Choi, X. Liu, W. J. Yoo, Carrier transport at the metal-MoS 2 interface, Nanoscale, 7 (2015) 9222-9228. crossref(new window)

19.
A. D. Franklin, S.-J. Han, A. A. Bol, V. Perebeinos, Double Contacts for Improved Performance of Graphene Transistors, IEEE Electron Device Lett., 33 2012) 17-19. crossref(new window)

20.
Y. Matsuda, W.-Q. Deng, W. A. Goddard III, Contact Resistance for "End-Contacted" Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem C, 114 (2010) 17845-17850. crossref(new window)

21.
J. T. Smith, A. D. Franklin, D. B. Farmer, C. D. Dimitrakopoulos, Reducing contact resistance in graphene devices through contact area patterning, ACS Nano, 7 (2013) 3661-3667. crossref(new window)

22.
L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, C. R. Dean, One-dimensional electrical contact to a two-dimensional material, Science, 342 (2013) 614-617. crossref(new window)

23.
W. S. Leong, H. Gong, J. T. L. Thong., Lowcontact-resistance graphene devices with nickeletched-graphene contacts, ACS Nano, 8 (2014) 994-1001. crossref(new window)

24.
J. Chen, T. Shi, T. Cai, T. Xu, L. Sun, X. Wu, D. Yu, Self healing of defected graphene, Appl. Phys. Lett., 102 (2013) 103107. crossref(new window)

25.
X. Lia, W. Caia, J. Ana, S. Kimb, J. Nahb, D. Yanga, R. Pinera, A. Velamakannia, I. Junga, E. Tutucb, S. K. Banerjeeb, L. Colombo, R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009) 1312-1314. crossref(new window)

26.
X. Li, W. Cai, L. Colombo, R. S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett., 9 (2009) 4268-4272. crossref(new window)

27.
L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies, Nano Lett., 2011, 11, 3190-3196. crossref(new window)

28.
A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143 (2007) 47-57. crossref(new window)

29.
P. Venezuela, M. Lazzeri, F. Mauri, Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands, Phys. Rev. B, 84 (2011) 035433. crossref(new window)

30.
A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S., Novoselov and C. Casiraghi, Probing the Nature of Defects in Graphene by Raman Spectroscopy, Nano Lett., 12 (2012) 3925-3930. crossref(new window)

31.
S. S. Cohen, Contact Resistance and Methods for Its Determination, Thin Solid Films, 104 (1983) 361-379. crossref(new window)

32.
W. M. Loh, S. E. Swirhun, T. A. Schreyer, R. M. Swanson, K. C. Saraswat, Modeling and measurement of contact resistances, IEEE Trans. Electron Devices, 34 (1987) 512-524. crossref(new window)

33.
D. K. Schroder, Semiconductor material and device characterization, 3rd ed. Wiley, New York, (2006) 147.