Advanced SearchSearch Tips
Optimization of Operating Parameters and Components for Water Electrolysis Using Anion Exchange Membrane
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimization of Operating Parameters and Components for Water Electrolysis Using Anion Exchange Membrane
Jang, Myeong Je; Won, Mi So; Lee, Kyu Hwan; Choi, Sung Mook;
  PDF(new window)
The hydrogen has been recognized as a clean, nonpolluting and unlimited energy source that can solve fossil fuel depletion and environmental pollution problems at the same time. Water electrolysis has been the most attractive technology in a way to produce hydrogen because it does not emit any pollutants compared to other method such as natural gas steam reforming and coal gasification etc. In order to improve efficiency and durability of the water electrolysis, comprehensive studies for highly active and stable electrocatalysts have been performed. The platinum group metal (PGM; Pt, Ru, Pd, Rh, etc.) electrocatalysts indicated a higher activity and stability compared with other transition metals in harsh condition such as acid solution. It is necessary to develop inexpensive non-noble metal catalysts such as transition metal oxides because the PGM catalysts is expensive materials with insufficient it's reserves. The optimization of operating parameter and the components is also important factor to develop an efficient water electrolysis cell. In this study, we optimized the operating parameter and components such as the type of AEM and density of gas diffusion layer (GDL) and the temperature/concentration of the electrolyte solution for the anion exchange membrane water electrolysis cell (AEMWEC) with the transition metal oxide alloy anode and cathode electrocatalysts. The maximum current density was with parameter and component optimization.
Hydrogen;Water electrolysis;Anion exchange membrane (AEM);
 Cited by
G. W. Crabtree, M. S. Dresselhaus, M. V. Buchanan, The hydrogen economy, Phys Today., 57 (2004) 39-44. crossref(new window)

A. Filpi, M. Boccia, H. Gasteiger, Pt-free cathode catalyst performance in $H_2/O_2$ anion-exchange membrane fuel cells (AMFCs), ECS Transactions., 16 (2008) 1835-1845. crossref(new window)

M. Faraj, E. Elia, M. Boccia, A. Filpi, A. Pucci, F. Ciardelli, New anion conducting membranes based on functionalized styrene-butadiene-styrene triblock copolymer for fuel cells applications, Journal of Polymer Science Part A: Polymer Chemistry., 49 (2011) 3437-3447.

M. Piana, M. Boccia, A. Filpi, E. Flammia, H. A. Miller, M. Orsini, F. Salusti, S. Santiccioli, F. Ciardelli, A. Pucci, $H_2$/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst, J Power Sources., 195 (2010) 5875-5881. crossref(new window)

Y. Leng, G. Chen, A. J. Mendoza, T. B. Tighe, M. A. Hickner, C. Wang, Solid-state water electrolysis with an alkaline membrane, J Am Chem Soc., 134 (2012) 9054-9057. crossref(new window)

C. C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Highly Efficient Platinum Group Metal Free Based Membrane-Electrode Assembly for Anion Exchange Membrane Water Electrolysis, Angewandte Chemie. 126 (2014) 1402-1405. crossref(new window)

Thomas S, Visakh P. Handbook of Engineering and Speciality Thermoplastics: Volume 3: Polyethers and Polyesters, First Ed, Wiley-Scrivener (2011) 55.

S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Advanced alkaline water electrolysis, Electrochim Acta., 82 (2012) 384-391. crossref(new window)

S. Chempath, J. M. Boncella, L. R. Pratt, N. Henson, B. S. Pivovar, Density functional theory study of degradation of tetraalkylammonium hydroxides, The Journal of Physical Chemistry C., 114 (2010) 11977-11983.

K. S. Moon, D. W. Park, The characteristics of hydrogen production according to electrode materials in alkaline water electrolysis, Journal of Energy Engineering., 24 (2015) 34-39.

H. S. Choi, D. S. Yim, C. H. Rhyu, J. C Kim, G. J. Hwang, Study on the Electrode Characteristics for the Alkaline Water Electrolysis, Trans. of the Korean Hydrogen & New Energy Society., 23 (2012) 117-124. crossref(new window)

A. Appleby, G. Crepy, J. Jacquelin, High efficiency water electrolysis in alkaline solution, Int J Hydrogen Energy., 3 (1978) 21-37. crossref(new window)

S. Adhikari, J. Ai, K. R. Hebert, K. Ho, C. Wang, Hydrogen in aluminum during alkaline corrosion, Electrochim Acta., 55 (2010) 5326-5331. crossref(new window)

M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, First Ed, Pergamon Press, Oxford (1966), 312.