Advanced SearchSearch Tips
Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube
Lee, Ji Hun; Song, Man-Ho; Kang, Chan Hyoung;
  PDF(new window)
Thermal radiation pastes were prepared by dispersing carbon materials as fillers with a content of 1 weight percent in an acrylic resin. The kind of fillers was as follows; graphite, graphite, carbon nanotube(CNT), a 1:1 mixture of graphite and CNT, and a 1:1 mixture of graphite and CNT. Thermal emissivity was measured as 0.890 for the samples with graphite only, 0.893 for that with CNT only, and 0.892 for those containing both. After coating prepared pastes on a side of 0.4 mm thick aluminium plate and placing the plate over an opening of a box maintained at with the coated side out, the temperatures on the uncoated side of the plates were measured. The samples containing graphite and CNT showed the lowest temperatures. The paste with mixed fillers was coated on the back side of the PCB of an LED module and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. The thermal resistance of the module with coated PCB was measured as 14.34 K/W whereas that with uncoated PCB was 15.02 K/W. The structure function analysis of T3ster data revealed that the difference between junction and ambient temperatures was for the coated case and for the uncoated. From the infrared images of heated LED modules, the hottest-spot temperature of the module with coated PCB was lower than that of the uncoated one for a given period of LED operation.
Thermal radiation;Filler;Emissivity;Thermal resistance;Junction temperature;
 Cited by
A. Castellazzi, M. Honsberg-Riedl, G. Wachutka, Thermal characterization of power devices during transient operation, Microelectron. J., 37 (2006) 145-151. crossref(new window)

S. Garimella, A. S. Fleischer, J. Y. Murphy, A. Keshavarzi, R. Prasher, C. Patel, S. H. Bhavnani, R. Venkatasubramanian, R. Mahajan, Y. Joshi, B. Sammakia, B. A. Myers, L. Chorosinski, M. Baelmans, P. Sathyamurthy, Thermal challenges in nextgeneration electronic systems, IEEE Trans. Comp. Pack. Tech., 31 (2008) 801-813. crossref(new window)

A. Castellazzi, T. Funaki, T. Kimoto, T. Hikihara, Thermal instability effects in SiC power MOSFETs, Microelectron. Reliab., 52 (2012) 2414-2419. crossref(new window)

M. Riccio, A. Castellazzi, G. de Falco, A. Irace, Experimental analysis of electro-thermal instability in SiC power MOSFETs, Microelectron. Reliab., 53 (2013) 1739-1744. crossref(new window)

D. A. Jaworske, Optical and calorimetric evaluation of Z-93-P and other thermal control coatings, Thin Solid Films, 290-291 (1996) 278-282. crossref(new window)

J. Yi, Y. X. D. He, Y. Sun, Y. Li, Electron beamphysical vapor deposition of SiC/$SiO_2$ high emissivity thin film, Appl. Surf. Sci., 253 (2007) 4361-4366. crossref(new window)

H. Yu, G. Xu, X. Shen, X. Yan, C. Shao, C. Hu, Effects of size, shape and floatage of Cu particles on the low infrared emissivity coatings, Progr. Org. Coating., 66 (2009) 161-166. crossref(new window)

J.-S. Roh, J.-S. Ahn, B.-J. Kim, H.-Y. Jeon, S.-K. Seo, S. H. Kim, S.-W. Lee, Thermal emissivity changes as a function of degree of flakes alignment on the graphite surfaces, J. Kor. Inst. Surf. Eng., 42 (2009) 95-101. crossref(new window)

W.-Y. Eom, J.-S. Roh, S.-K. Seo, J.-S. Ahn, D.-S. Kang, S. H. Kim, Thermal emission effect of electronic parts using carbon materials, Kor. J. Mater. Res., 20 (2010) 204-209. crossref(new window)

H. Miyagawa, M. J. Rich, L. T. Drzal, Thermophysical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers, Thermochim. Acta, 442 (2006) 67-73. crossref(new window)

K. Saeed, S.-Y. Park, H.-J. Lee, J.-B. Back, W.-S. Huh, Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite, Polymer, 47 (2006) 8019-8025. crossref(new window)

J. S. Jeong, S. Y. Jeon, T. Y. Lee, J. H. Park, J. H. Shin, P. S. Alegaonkar, A. S. Berdinsky, J. B. Yoo, Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning, Diamond & Relat. Mater., 15 (2006) 1839-1843. crossref(new window)

S. Bellayer, J. W. Gilman, S. S. Rahatekar, S. Bourbigot, X. Flambard, L. M. Hanssen, H. Guo, S. Kumar, Characterization of SWCNT and PAN/ SWCNT films, Carbon, 45 (2007) 2417-2423. crossref(new window)

M. V. Jose, B. W. Steinert, V. Thomas, D. R. Dean, M. A. Abdalla, G. Price, G. M. Janowski, Morphology and mechanical properties of nylon 6/MWNT nanofibers, Polymer, 48 (2007) 1096-1104. crossref(new window)

H. Ishida, S. Rimdusit, Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine, Thermochim. Acta, 320 (1998) 177-186. crossref(new window)

W. Zhou, S. Qi, H. Li. S. Shao, Study on insulating thermal conductive BN/HDPE composites, Thermochim. Acta, 452 (2007) 36-42. crossref(new window)

W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Thermal conductivity of boron nitride reinforced polyethylene composites, Mater. Res. Bull., 42 (2007) 1863-1873. crossref(new window)

S. Yu, P. Hing, X. Hu, Thermal conductivity of polystyrene-aluminium nitride composite, Composites: Part A, 33 (2002) 289-292. crossref(new window)

S. -H. Xie, B. -K. Zhu, J. -B. Li, X. -Z. Wei, Z. -K. Xu, Preparation and properties of polyimide/aluminium nitride composites, Polymer Testing, 23 (2004) 797-801. crossref(new window)

B. Weidenfeller, M. Hofer, F. R. Schilling, Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene, Composites: Part A, 35 (2004) 423-429. crossref(new window)

G. -W. Lee, M. Park, J. Kim, J. I. Lee, H. G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites: Part A, 37 (2006) 727-734. crossref(new window)

22., Mentor Graphics T3ster, 2015. 09. 12.

M. Y. Yoon, J. H. Im, C. H. Kang, Heat spreading properties of CVD diamond coated Al heat sink, J. Kor. Inst. Surf. Eng., 48 (2015) 297-302. crossref(new window)

24., Timage IR Pro+, 2015. 09. 12.