Advanced SearchSearch Tips
Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes
Kim, Nak-Cheon; Kim, Se-Hong; Lee, Jin-Beum; Kim, Hyun-Hee; Yang, Ji-Hye; Kim, Dong-Won;
  PDF(new window)
Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.
Pd-Ag alloy hydrogen membrane;Perm-selectivity;Porous stainless steel support;Sputter multi-deposition;Surface treatment;
 Cited by
BP p.l.c, BP Statistical Review of World Energy, 63rd Ed, BP p.l.c, London (2014) 1-45.

S. Uemiya, et al, Steam reforming of methane in a hydrogen-permeable membrane reactor, Appl. Catal., 67 (1990) 223-230. crossref(new window)

J. C. Amphlett, et al, Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells, Int. J. Hydrogen Energy, 19 (1994) 131-137. crossref(new window)

K. A. Petersen, C. S. Nielsen, S. L. Jorgensen, membrane Reforming for Hydrogen, Catal. Today 46 (1998) 193-201. crossref(new window)

Y. S. Cheng, et al, Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas mixture, J. Membr. Sci., 204 (2002) 329-340. crossref(new window)

H. C. Lim, The use of hydrogen energy in power sector and the future prospects, J. Elec. World. (2014) 31-40.

Hatlevik. O, Sabina, et al, Palladium and palladium alloy membranes for hydrogen separation and production: History, fabrication strategies, and current performance, Sep. Purif. Technol. (2010) 59-64.

S. E. Nam, K. H. Lee, A study on the palladium/nickel composite membrane by vacuum electrodeposition, J. Membr. Sci., 170 (2000) 91-99. crossref(new window)

H. B. Zhao, G. X. Xiong, G. V. Baron, Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering, Catalysis Today, 56 (2000) 89-96. crossref(new window)

C. S. Jun, K. H. Lee, Palladium and palladium alloy composite membranes prepared by metalorganic chemical vapor deposition method(coldwall), J. Membr. Sci., 176 (2000) 121-130. crossref(new window)

T. A. Peters, M. Stange, H. Klette, R. Bredesen, High pressure performance of thin Pd-23%Ag/ stainless steel composite membranes in water gas shift gas mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux, J. Membr. Sci., 316 (2008) 119-127. crossref(new window)

D. Wang, J. Tong, H. Xu, Y. Matsumura, Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide, Catalysis Today, 93 (2004) 689-693.

Timothy L. Ward, Tien Dao, Model of hydrogen permeation behavior in palladium membranes, J. Membr. Sci., 153 (1999) 211-231. crossref(new window)

S. K. Ryi, J. S. Park, Research trend of Pd-based hydrogen membrane, KIC News, Vol14, No.3, (2011) 46-53.

Y. M. Lin, M. H. Rei, Separation of hydrogen from the gas mixtures out of catalytic reformer by using supported palladium membrane, Sep. Purif. Tech., 25 (2001) 87-95. crossref(new window)

Y. She, J. Han, Y. H. Ma, Palladium membrane reactor for the dehydrogenation of ethylbenzene to styrene, Catalysis Today, 67 (2001) 43-53. crossref(new window)

J. Shu, A. Adnot, B. P. A. Grandjean, S. Kaliaguine, Structurally stable composite pd-ag alloy membranes: introduction of a diffusion barrier, Thin Solid Films, 286 (1996) 72-79. crossref(new window)

S. E. Nam, S. H. Lee, K. H. Lee, Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition, J. Membr. Sci.,153 (1999) 163-173. crossref(new window)

N. Jemaa, J. Shu, S. Kaliaguine, B. P A, Grandjean, Thin Palladium Film Formation on Shot Peening Modified Porous Stainless Steel Substrates, Ind. Eng. Chem. Res., 35 (1996) 973-977. crossref(new window)

Gennady S. Burkhanov, Nelli B. Gorina, Natalia B. Kolchugina and Nataliya R. Roshan, Palladiumbased alloy membranes for separation of high purity hydrogen from hydrogen containing gas mixtures, Platinum Metals Rev., 55 (2011) 4-6.

O. M. Lovvik, T. A. Peters, R. Bredesen, Firstprinciples calculations on sulfur interacting with ternary Pd-Ag-transition metal alloy membrane alloys, J. Membr. Sci., 453 (2014) 525-531. crossref(new window)

D. Pizzi, R. Worth, M. G. Baschetti, G. C. Sarti, K. I. Noda, Hydrogen permeability of 2.5um palladium-silver membranes deposited on ceramic support, J. Membr. Sci., 325 (2008) 446-453. crossref(new window)

A. G. Knapton, Palladium alloys for hydrogen diffusion membranes, Platinum Metals Rev., 21 (1977) 44-50.

J. Y. Han, S. R. Joo, J. H. Lee, D. G. Park, D. W. Kim, The effect of Sputtering Process Variable on the Properties of Pd Alloy Hydrogen Separation Membranes, J. Kor. Inst. Surf. Eng., 46 (2013) 248-257. crossref(new window)

D. G. Park, H. J. Kim, H. J. Kim, D. W. Kim, A study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane, J. Kor. Inst. Surf. Eng., 45 (2012) 248-256. crossref(new window)

R. S. A. De lange, K. Keizer, A. J. Buurggraaf, Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes, J. Membr. Sci., 104 (1995) 81-100. crossref(new window)

S. K. Ryi, N. Xu, A. Li, C. J. Lim, J. R. Grace, Electroless Pd membrane deposition on alumina modified porous Hastelloy substrate with EDTAfree bath, Int. J. Hydrogen Energy, 35 (2010) 2328-2335. crossref(new window)

C. H. Kim, J. H. Lee, S. T. Jo, D. W. Kim, Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes, J. Kor. Inst. Surf. Eng., 48 (2015) 11-22. crossref(new window)

J. S. Park, D. W. Kim, K. R. Hwang, C. B. Lee, S. M. Kang, B. I. Woo, H. S. An, Y. G. Shin, and B. C. Sim, Manufacturing Method for Palladium-Silver Alloy Diffusion Barrier Layer, Korea Patent, 1012713940000, (2013).

J. H. Lee, J. Y. Han, K. M. Kim, S. K. Ryi, D. W. Kim, Development of homogeneous Pd-Ag alloy membrane formed on porous stainless steel by multi-layered films and Ag-upfilling heat treatment, J. Membr. Sci, 492 (2015) 242-248. crossref(new window)

H. Baker, ASM Handbook 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1999) 29, Sections 2.2.

H. Baker, ASM Handbook 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1999) 200, Sections 2.2.

J. Y. Han, C. H. Kim, S. H. Kim, D. W. Kim, Development of Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity, Adv. Mater. Sci. Eng., 2014 (2014) 1-10.

V. Jayaraman, Y. S. Lin, Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes, J. Membr. Sci., 104 (1995) 251-262. crossref(new window)

George Xomeritakis, Y. S. Lin, Fabrication of thin metallic membranes by MOCVD and sputtering, J. Membr. Sci., 133 (1997) 217-230. crossref(new window)

B. McCool, G. Xomeritakis, Y. S. Lin, Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes, J. Membr. Sci., 161 (1999) 67-76. crossref(new window)

J. O'Brien, R. Hughes, J. hisek, Pd / Ag membranes on porous alumina substrates by unbalanced magnetron sputtering, Surf. Coat. Tech., 142-144 (2001) 253-259. crossref(new window)

S. Tosti, L. Bettinali, S. Castelli, F. Sarto, S. Scaglione, V. Violante, Sputtered, electroless, and rolled palladium-ceramic membranes, J. Membr. Sci., 196 (2002) 241-249. crossref(new window)

A. I. Pereira, P. Perez, S. C. Rodrigues, A. Mendes, L. M. Madeira, C. J. Tavares, Deposition of Pd-Ag thin film membranes on ceramic supports for hydrogen purification/separation, J. Membr. Sci., 61 (2014) 528-533.

Alexander S. Augustine, Iva P. Mardilovich, Nikolaos K. Kazantzis, Yi Hua Ma, Durability of PSS-supported Pd-membranes under mixed gas and water-gas shift conditions, J. Membr. Sci., 415-416 (2012) 213-220. crossref(new window)

Ana Tarditi, Camila Gerboni, Laura Cornaglia, PdAu membranes supported on top of vacuumassisted $ZrO_2$-modified porous stainless steel substrates, J. Membr. Sci., 428 (2013) 1-10. crossref(new window)