JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Roles of Signaling Pathways in the Epithelial-Mesenchymal Transition in Cancer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Roles of Signaling Pathways in the Epithelial-Mesenchymal Transition in Cancer
Liu, Xia; Yun, Fen; Shi, Lin; Li, Zhe-Hai; Luo, Nian-Rong; Jia, Yong-Feng;
  PDF(new window)
 Abstract
The epithelial-mesenchymal transition (EMT) is a cellular process though which an epithelial phenotype can be converted into a phenotype of mesenchymal cells. Under physiological conditions EMT is important for embryogenesis, organ development, wound repair and tissue remodeling. However, EMT may also be activated under pathologic conditions, especially in carcinogenesis and metastatic progression. Major signaling pathways involved in EMT include transforming growth factor , Wnt, Notch, Hedgehog and other signaling pathways. These pathways are related to several transcription factors, including Twist, Smads and zinc finger proteins snail and slug. These interact with each other to provide crosstalk between the relevant signaling pathways. This review lays emphasis on studying the relationship between EMT and signaling pathways in carcinogenesis and metastatic progression.
 Keywords
EMT;signaling pathway;cancer;
 Language
English
 Cited by
1.
Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles, PLOS ONE, 2016, 11, 7, e0159163  crossref(new windwow)
2.
Galectin-1 from cancer-associated fibroblasts induces epithelial–mesenchymal transition through β1 integrin-mediated upregulation of Gli1 in gastric cancer, Journal of Experimental & Clinical Cancer Research, 2016, 35, 1  crossref(new windwow)
3.
Leukemia inhibitory factor receptor negatively regulates the metastasis of pancreatic cancer cells in vitro and in vivo, Oncology Reports, 2016, 36, 2, 827  crossref(new windwow)
4.
TGFβ1-Smad3-Jagged1-Notch1-Slug signaling pathway takes part in tumorigenesis and progress of tongue squamous cell carcinoma, Journal of Oral Pathology & Medicine, 2016, 45, 7, 486  crossref(new windwow)
5.
Interaction between Wnt/β-catenin pathway and microRNAs regulates epithelial-mesenchymal transition in gastric cancer (Review), International Journal of Oncology, 2016, 48, 6, 2236  crossref(new windwow)
6.
extracts reverses TGF-β1-induced epithelial-mesenchymal transition in human lung adenocarcinoma cells and suppresses tumor growth in vivo, Environmental Toxicology, 2017, 32, 7, 1878  crossref(new windwow)
 References
1.
Attisano L, Wrana JL (2002). Signal transduction by the TGF-$\beta$ superfamily. Science, 296, 1646-7. crossref(new window)

2.
Beachy PA, Karhadkar SS, Berman DM (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432, 324-31. crossref(new window)

3.
Cano A, Perez-Moreno MA, Rodrigo I, et al (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2, 76-83. crossref(new window)

4.
Chen T, Nie H, Gao X, et al (2014a). Epithelial-mesenchymal transition involved in pulmonary fibrosis induced by multiwalled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett, 226, 150-62. crossref(new window)

5.
Chen X, Ye S, Xiao W, et al (2014b). ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFbeta/Smad and Jagged/Notch signaling pathways in lens epithelial cells. Int J Mol Med, 33, 1664-70.

6.
Clevers H, Nusse R (2012). Wnt/beta-catenin signaling and disease. Cell, 149, 1192-205. crossref(new window)

7.
Gnemmi V, Bouillez A, Gaudelot K, et al (2014). MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/beta-catenin pathway and interaction with SNAIL promoter. Cancer Lett, 346, 225-36. crossref(new window)

8.
Guo J, Fu Z, Wei J, et al (2015). PRRX1 promotes epithelialmesenchymal transition through the Wnt/beta-catenin pathway in gastric cancer. Med Oncol, 32, 393. crossref(new window)

9.
Hassan WA, Yoshida R, Kudoh S, et al (2014). Notch1 controls cell invasion and metastasis in small cell lung carcinoma cell lines. Lung Cancer, 86, 304-10. crossref(new window)

10.
Hay ED (1982). Interaction of embryonic surface and cytoskeleton with extracellular matrix. Am J Anat, 165, 1-12. crossref(new window)

11.
Heldin CH, Landstrom M, Moustakas A (2009). Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol, 21, 166-76. crossref(new window)

12.
Hiraga R, Kato M, Miyagawa S, et al (2013). Nox4-derived ROS signaling contributes to TGF-beta-induced epithelialmesenchymal transition in pancreatic cancer cells. Anticancer Res, 33, 4431-8.

13.
Hofman P, Vouret-Craviari V (2012). Microbes-induced EMT at the crossroad of inflammation and cancer. Gut Microbes, 3, 176-85. crossref(new window)

14.
Hu S, Yu W, Lv TJ, et al (2014). Evidence of TGF-beta1 mediated epithelial-mesenchymal transition in immortalized benign prostatic hyperplasia cells. Mol Membr Biol, 31, 103-10. crossref(new window)

15.
Huynh TT, Rao YK, Lee WH, et al (2014). Destruxin B inhibits hepatocellular carcinoma cell growth through modulation of the Wnt/beta-catenin signaling pathway and epithelialmesenchymal transition. Toxicol In Vitro, 28, 552-61. crossref(new window)

16.
Ishida T, Hijioka H, Kume K, et al (2013). Notch signaling induces EMT in OSCC cell lines in a hypoxic environment. Oncol Lett, 6, 1201-6.

17.
Joost S, Almada LL, Rohnalter V, et al (2012). GLI1 inhibition promotes epithelial-to-mesenchymal transition in pancreatic cancer cells. Cancer Res, 72, 88-99.

18.
Kalluri R, Neilson EG (2003). Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 112, 1776-84. crossref(new window)

19.
Kalluri R, Weinberg RA (2009). The basics of epithelialmesenchymal transition. J Clin Invest, 119, 1420-8. crossref(new window)

20.
Karhadkar SS, Bova GS, Abdallah N, et al (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature, 431, 707-12. crossref(new window)

21.
Katsuno Y, Lamouille S, Derynck R (2013). TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol, 25, 76-84. crossref(new window)

22.
Lan A, Qi Y, Du J (2014). Akt2 mediates TGF-beta1-induced epithelial to mesenchymal transition by deactivating GSK3beta/snail signaling pathway in renal tubular epithelial cells. Cell Physiol Biochem, 34, 368-82. crossref(new window)

23.
Lei J, Ma J, Ma Q, et al (2013). Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol Cancer, 12, 66. crossref(new window)

24.
Li H, Wang Z, Zhang W, et al (2015). VGLL4 inhibits EMT in part through suppressing Wnt/beta-catenin signaling pathway in gastric cancer. Med Oncol, 32, 83. crossref(new window)

25.
Li LC, Peng Y, Liu YM, et al (2014). Gastric cancer cell growth and epithelial-mesenchymal transition are inhibited by gamma-secretase inhibitor DAPT. Oncol Lett, 7, 2160-4.

26.
Liu JK, Chen WC, Ji XZ, et al (2015). Correlation of overexpression of nestin with expression of epithelialmesenchymal transition-related proteins in gastric adenocarcinoma. Asian Pac J Cancer Prev, 16, 2777-83. crossref(new window)

27.
Liu L, Chen X, Wang Y, et al (2014). Notch3 is important for TGF-beta-induced epithelial-mesenchymal transition in non-small cell lung cancer bone metastasis by regulating ZEB-1. Cancer Gene Ther, 21, 364-72. crossref(new window)

28.
Logan CY, Nusse R (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20, 781-810. crossref(new window)

29.
Luo WR, Chen XY, Li SY, et al (2012). Neoplastic spindle cells in nasopharyngeal carcinoma show features of epithelial mesenchymal transition. Histopathol, 61, 113-22. crossref(new window)

30.
Massague J (2008). TGFbeta in Cancer. Cell, 134, 215-30. crossref(new window)

31.
Miele L, Golde T, Osborne B (2006a). Notch signaling in cancer. Curr Mol Med, 6, 905-18. crossref(new window)

32.
Miele L, Miao H, Nickoloff BJ (2006b). NOTCH signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets, 6, 313-23. crossref(new window)

33.
Moustakas A, Heldin CH (2007). Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci, 98, 1512-20. crossref(new window)

34.
Nelson WJ (2008). Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans, 36, 149-55. crossref(new window)

35.
Nusse R, Fuerer C, Ching W, et al (2008). Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol, 73, 59-66. crossref(new window)

36.
Penton AL, Leonard LD, Spinner NB (2012). Notch signaling in human development and disease. Semin Cell Dev Biol, 23, 450-7. crossref(new window)

37.
Romero-Gallo J, Sozmen EG, Chytil A, et al (2005). Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene, 24, 3028-41. crossref(new window)

38.
Schinner S, Willenberg HS, Schott M, et al (2009). Pathophysiological aspects of Wnt-signaling in endocrine disease. Eur J Endocrinol, 160, 731-7. crossref(new window)

39.
Takeyama Y, Sato M, Horio M, et al (2010). Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett, 296, 216-24. crossref(new window)

40.
Taskin S, Dunder I, Erol E, et al (2012). Roles of E-cadherin and cyclooxygenase enzymes in predicting different survival patterns of optimally cytoreduced serous ovarian cancer patients. Asian Pac J Cancer Prev, 13, 5715-9. crossref(new window)

41.
Teglund S, Toftgard R (2010). Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta, 1805, 181-208.

42.
Wang T, Xuan X, Pian L, et al (2014a). Notch-1-mediated esophageal carcinoma EC-9706 cell invasion and metastasis by inducing epithelial-mesenchymal transition through Snail. Tumour Biol, 35, 1193-201. crossref(new window)

43.
Wang ZS, Shen Y, Li X, et al (2014b). Significance and prognostic value of Gli-1 and Snail/E-cadherin expression in progressive gastric cancer. Tumour Biol, 35, 1357-63. crossref(new window)

44.
Wei W, Chua MS, Grepper S, et al (2010). Small molecule antagonists of Tcf4/beta-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int J Cancer, 126, 2426-36.

45.
Yang J, Weinberg RA (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 14, 818-29. crossref(new window)

46.
Xia YY, Yin L, Jiang N, et al (2015). Downregulating HMGA2 attenuates epithelial-mesenchymal transition-induced invasion and migration in nasopharyngeal cancer cells. Biochem Biophys Res Commun, 463, 357-63. crossref(new window)

47.
Yue D, Li H, Che J, et al (2014). Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas. J Exp Clin Cancer Res, 33, 34. crossref(new window)

48.
Zaid KW (2014). Immunohistochemical assessment of E-cadherin and beta-catenin in the histological differentiations of oral squamous cell carcinoma. Asian Pac J Cancer Prev, 15, 8847-53. crossref(new window)

49.
Zhang HY, Wang ZQ, Li YY, et al (2014). Transforming growth factor-beta1-induced epithelial-mesenchymal transition in human esophageal squamous cell carcinoma via the PTEN/ PI3K signaling pathway. Oncol Rep, 32, 2134-42.

50.
Zhang X, Zhao X, Shao S, et al (2015). Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role. Int J Oncol, 46, 1141-8.

51.
Zhao ZL, Ma SR, Wang WM, et al (2015). Notch signaling induces epithelial-mesenchymal transition to promote invasion and metastasis in adenoid cystic carcinoma. Am J Transl Res, 7, 162-74.

52.
Zhou Q, Wang Y, Peng B, et al (2013). The roles of Notch1 expression in the migration of intrahepatic cholangiocarcinoma. BMC Cancer, 13, 244. crossref(new window)

53.
Zhu QC, Gao RY, Wu W, et al (2013). Epithelial-mesenchymal transition and its role in the pathogenesis of colorectal cancer. Asian Pac J Cancer Prev, 14, 2689-98. crossref(new window)

54.
Zong D, Yin L, Zhong Q, et al (2015). ZNF 488 enhances the invasion and tumorigenesis in nasopharyngeal carcinoma via the wnt signaling pathway involving epithelial mesenchymal transition. Cancer Res Treat.