Advanced SearchSearch Tips
Diffusion Weighted Imaging Can Distinguish Benign from Malignant Mediastinal Tumors and Mass Lesions: Comparison with Positron Emission Tomography
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Diffusion Weighted Imaging Can Distinguish Benign from Malignant Mediastinal Tumors and Mass Lesions: Comparison with Positron Emission Tomography
Usuda, Katsuo; Maeda, Sumiko; Motono, Nozomu; Ueno, Masakatsu; Tanaka, Makoto; Machida, Yuichiro; Matoba, Munetaka; Watanabe, Naoto; Tonami, Hisao; Ueda, Yoshimichi; Sagawa, Motoyasu;
  PDF(new window)
Background: Diffusion-weighted magnetic resonance imaging (DWI) makes it possible to detect malignant tumors based on the diffusion of water molecules. It is uncertain whether DWI is more useful than positron emission tomography-computed tomography (PET-CT) for distinguishing benign from malignant mediastinal tumors and mass lesions. Materials and Methods: Sixteen malignant mediastinal tumors (thymomas 7, thymic cancers 3, malignant lymphomas 3, malignant germ cell tumors 2, and thymic carcinoid 1) and 12 benign mediastinal tumors or mass lesions were assessed in this study. DWI and PET-CT were performed before biopsy or surgery. Results: The apparent diffusion coefficient (ADC) value () of malignant mediastinal tumors was significantly lower than that () of benign mediastinal tumors and mass lesions (P<0.0001). Maximum standardized uptake value (SUVmax) () of malignant mediastinal tumors was significantly higher than that () of benign mediastinal tumors and mass lesions (P
Mediastinal tumor and mass lesion;diagnosis;magnetic resonance imaging;diffusion-weighted imaging;
 Cited by
Cheran SK, Nielsen ND, Patz EF (2004). False-negative findings for primary lung tumors on FDG positron emission tomography. Staging and prognostic implications. AJR, 182, 1129-32. crossref(new window)

Could MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK (2001). Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions. A metaanalysis. JAMA, 285, 914-24. crossref(new window)

Fornasa F, Pinali L, Gasparini A, Toniolli E, Montemezzi S (2011). Diffusion-weighted magnetic resonance imaging in focal breast lesions. Analysis of 78 cases with pathological correlation. Radiol med, 116, 264-75. crossref(new window)

Goo JM, Im JG, Do KH, et al (2000). Pulmonary tuberculoma evaluated by means of FDG PET. Findings in 10 cases. Radiol, 216, 117-21. crossref(new window)

Gumustas S, Inan N, Sarisoy HT, et al (2011). Malignant versus benign mediastinal lesions. Quantitative assessment with diffusion weighted MR imaging. Eur Radiol, 21, 2255-60. crossref(new window)

Hayes SA, Plodkowski AJ, Ginsberg MS. (2014). Imaging of thoracic cavity tumors. Surg Oncol Clin N Am, 23, 709-33. crossref(new window)

Koike N, Cho A, Nasu K, et al (2009). Role of diffusion-weighted magnetic resonance imaging in the differential diagnosis of focal hepatic lesions. World J gastroenterol, 15, 5805-12. crossref(new window)

Kubota K, Yamada S, Kondo T, et al (1996). PET imaging of primary mediastinal tumours. Br J Cancer, 73, 882-6. crossref(new window)

Kwee TC, Takahara T, Ochiai R, et al (2010). Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET. The state of the art and potential application. J Nucl Med, 51, 1549-58. crossref(new window)

Le Bihan D, Breton E, Lallemand D, et al (1988). Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiol, 168, 497-505. crossref(new window)

Liu RS,, Yeh SH,, Huang MH, et al (1995). Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of thymoma. A preliminary report. Eur J Nucl Med, 22, 1402-7. crossref(new window)

Liu Y, Bai RJ, Sun HR, Liu HD, Wang DH (2009). Diffusionweighted magnetic resonance imaging of uterine cervical cancer. J Comput Assist Tomogr, 33, 858-62. crossref(new window)

Luzzi L, Campione A, Gorla A, et al (2009). Role of fluorineflurodeoxyglucose positron emission tomography/computed tomography in preoperative assessment of anterior mediastinal masses. Eur J Cardiothorac Surg, 36, 475-9. crossref(new window)

Nakayama T, Yoshimitsu K, Irie H, et al (2004). Usefulness of the calculated apparent diffusion coefficient value in the differential diagnosis of retroperitoneal masses. J Magn Reson Imaging, 20, 735-42. crossref(new window)

Nomori H, Mori T, Ikeda K, et al (2008). Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thoracic Cardiovasc Surg, 135, 816-22. crossref(new window)

Mori T, Nomori H, Ikeda K, et al (2008). Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses. Comparison with positron emission tomography. J Thoracic Oncol, 3, 358-64. crossref(new window)

Ohba Y, Nomori H, Mori T, et al (2009). Is diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fludeoxyglucose F 18 in imaging non-small cell lung cancer?, J Thorac Cardiovasc Surg, 138, 439-445. crossref(new window)

Razek AA, Elmorsy A, Elshafey M, Elhadedy T, Hamza O (2009). Assessment of mediastinal tumors with diffusionweighted single-shot echo-planar MRI. J Magn Reson Imagin, 830, 535-40.

Sasaki M, Kuwabara Y, Ichiya Y, et al (1999). Differential diagnosis of thymic tumors using a combination of $^{11}C$-methionine PET and FDG PET. J Nucl Med, 40, 1595-601.

Satoh, Y, Ichikawa T, Motosui U, et al (2011). Diagnosis of peritoneal disseminatiom. Comparison of 18F-DDG PET/ CT, diffusion-weighted MRI, and contrast-enhanced MDCT. AJR, 196, 447-53. crossref(new window)

Schaarschmidt BM, Buchbender C, Nensa F, et al (2015). Correlation of the Apparent Diffusion Coefficient (ADC) with the Standardized Uptake Value (SUV) in Lymph Node Metastases of Non-Small Cell Lung Cancer (NSCLC) Patients Using Hybrid 18F-FDG PET/MRI. PLoS One, 10, eo116277.

Seki S, Koyama H, Ohno Y, et al (2014). Diffusion-weighted MR imaging vs multi-detector row CT. Direct comparison of capability for assessment of management needs for anterior mediastinal solitary tumors. Eur J Radiol, 83, 835-42. crossref(new window)

Sorensen AG, Buonanno FS, Gonzalez RG, et al (1996). Hyperacute stroke. Evaluation with combined multisection diffusion-weighted and hemodynamically weighted echoplanar MR imaging. Radiology, 199, 391-401. crossref(new window)

Sung YM, Lee KS, Kim BT, et al (2006). 18F-FDG PET/CT of thymic epithelial tumors. Usefulness for distinguishing and staging tumor subgroups. J Nucl Med, 47, 1628-34.

Szafer A, Zhong J, Gore JC (1995). Theoretical model for water diffusion in tissues. Magn Reson Med, 33, 697-712. crossref(new window)

Takahara T, Imai Y, Yamashita T, et al (2004). Diffusion weighted whole body imaging with background body signal suppression (DWIBS). Technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med, 22, 275-82.

Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J (1994). MR imaging of high-grade cerebrel gliomas. Value of diffusion-weighted echoplanar plus sequences. AJR, 162, 671-7. crossref(new window)

Tondo F, Saponaro A, Stecco A, et al (2011). Role of diffusionweighted imaging in the differential diagnosis of benign and malignant lesions of the chest-mediastinum. Radiol Med, 116, 720-33. crossref(new window)

Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC (2004). World health organization classification of tumours. Pathology and Genetics. Tumours of the lung, pleura, thymus and heart. IARC Press, Lyon.

Usuda K, Sagawa M, Motono N, et al (2013). Advantages of diffusion-weighted imaging over positron emission tomography-computed tomography in assessment of hilar and mediastinal lymph node in lung cancer. Ann Surg Oncol, 20, 1676-83. crossref(new window)

Usuda K, Sagawa M, Motono N, et al (2014). Diagnostic performance of diffusion weighted imaging of malignant and benign pulmonary nodules and masses. Comparison with positron emission tomography. Asian Pac J Cancer Prev, 15, 4629-35. crossref(new window)

Usuda K, Zhao XT, Sagawa M, et al (2011). Diffusion-weighted imaging is superior to PET in the detection and nodal assessment of lung cancers. Ann Thorac Surg, 91, 1689-95. crossref(new window)

Wang J, Takashima S, Takayama F, et al (2001). Head and neck lesions. Characterization with diffusion-weighted echoplanar MR imaging. Radiol, 220, 621-30. crossref(new window)

Yamamura J, Salomon G, Buchert R, et al (2011). Magnetic resonance imaging of prostate cancer. Diffusion-weighted imaging in comparison with sextant biopsy. J Comput Assist Tomogr, 35, 223-8. crossref(new window)

Zhang J, Tehrani YM, Wang L, et al (2008). Renal masses. Characterization with diffusion-weighted MR imaging--a preliminary experience. Radiol, 247, 458-64. crossref(new window)