JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Helicobacter pylori cag Pathogenicity Island cagL and orf17 Genotypes Predict Risk of Peptic Ulcerations but not Gastric Cancer in Iran
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Helicobacter pylori cag Pathogenicity Island cagL and orf17 Genotypes Predict Risk of Peptic Ulcerations but not Gastric Cancer in Iran
Raei, Negin; Latifi-Navid, Saeid; Zahri, Saber;
  PDF(new window)
 Abstract
Background: Gastric cancer (GC) is the third most common cancer regarding mortality in the world. The cag pathogenicity island (PAI) of Helicobacter pylori which contains genes associated with a more aggressive phenotype may involve in the pathogenesis of gastrointestinal disease. We here aimed to examine the associations of cagH, cagL, orf17, and cagG genotypes of H. pylori cag PAI with severe gastrointestinal disease. Materials and Methods: A total of 242 H. pylori strains were genotyped. Histopathological examination and classification of subjects were performed. Results: The frequencies of the cagH, cagL, cagG, and orf17 genotypes were 40/54 (74.1%), 53/54 (98.1%), 38/54 (70.4%), and 43/54 (79.6%), respectively, in patients with peptidic ulceration (PU),while in the control group, the frequencies were 87/147 (59.6%) for cagH, 121/146 (82.9%) for cagL, 109/146 (74.7%) for cagG, and 89/146 (61.0%) for orf17. The results of simple logistic regression analysis showed that the cagL and orf17 genotypes were significantly associated with an increased risk of PU not GC; the ORs (95% CI) were 10.950 (1.446-82.935), and 2.504 (1.193-5.253), respectively. No significant association was found between the cagH and cagG genotypes and the risk of both the PU and the GC in Iran (P>0.05). Finally, multiple logistic regression analysis showed that the cagL genotype was independently and significantly associated with the age-and sex-adjusted risk for PU; the OR (95% CI) was 9.557 (1.219-17.185). Conclusions: We conclude that the orf17 and especially cagL genotypes of H. pylori cag PAI could be factors for risk prediction of PU, but not GC in Iran.
 Keywords
H. pylori;cag PAI;genotype;peptic ulceration;gastric cancer;prediction;Iran;
 Language
English
 Cited by
1.
Helicobacter pylori babA2 Positivity Predicts Risk of Gastric Cancer in Ardabil, a Very High-Risk Area in Iran,;;;;

Asian Pacific Journal of Cancer Prevention, 2016. vol.17. 2, pp.733-738 crossref(new window)
1.
Helicobacter pylori babA2 Positivity Predicts Risk of Gastric Cancer in Ardabil, a Very High-Risk Area in Iran, Asian Pacific Journal of Cancer Prevention, 2016, 17, 2, 733  crossref(new windwow)
 References
1.
(1994). NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease. JAMA, 272, 65-9. crossref(new window)

2.
Asahi M, Azuma T, Ito S, et al (2000). Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med, 191, 593-602. crossref(new window)

3.
Atherton JC, Cao P, Peek RM, Jr., et al (1995). Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem, 270, 17771-7. crossref(new window)

4.
Audibert C, Burucoa C, Janvier B, et al (2001). implication of the structure of the Helicobacter pylori cag pathogenicity island in induction of interleukin-8 secretion. Infect Immun, 69, 1625-9. crossref(new window)

5.
Backert S, Clyne M, Tegtmeyer N (2011). Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal, 9, 28. crossref(new window)

6.
Backert S, Fronzes R, Waksman G (2008). VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol, 16, 409-13. crossref(new window)

7.
Backert S, Selbach M (2008). Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol, 10, 1573-81. crossref(new window)

8.
Blaser MJ (1992a). Helicobacter pylori: its role in disease. Clin Infect Dis, 15, 386-91. crossref(new window)

9.
Blaser MJ (1992b). Hypotheses on the pathogenesis and natural history of Helicobacter pylori-induced inflammation. Gastroenterol, 102, 720-7.

10.
Blaser MJ, Parsonnet J (1994). Parasitism by the “slow” bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J Clin Invest, 94, 4-8. crossref(new window)

11.
Censini S, Lange C, Xiang Z, et al (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A, 93, 14648-53. crossref(new window)

12.
Covacci A, Censini S, Bugnoli M, et al (1993). Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A, 90, 5791-5. crossref(new window)

13.
Crabtree JE, Covacci A, Farmery SM, et al (1995a). Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. J Clin Pathol, 48, 41-5. crossref(new window)

14.
Crabtree JE, Xiang Z, Lindley IJ, et al (1995b). Induction of interleukin-8 secretion from gastric epithelial cells by a cagA negative isogenic mutant of Helicobacter pylori. J Clin Pathol, 48, 967-9. crossref(new window)

15.
Dixon MF, Genta RM, Yardley JH, et al (1996). Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol, 20, 1161-81.

16.
Erzin Y, Koksal V, Altun S, et al (2006). Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA, babA2 genotypes and correlation with clinical outcome in Turkish patients with dyspepsia. Helicobacter, 11, 574-80. crossref(new window)

17.
Figura N, Valassina M (1999). Helicobacter pylori determinants of pathogenicity. J Chemother, 11, 591-600. crossref(new window)

18.
Fischer W, Puls J, Buhrdorf R, et al (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol, 42, 1337-48.

19.
Hessey SJ, Spencer J, Wyatt JI, et al (1990). Bacterial adhesion and disease activity in Helicobacter associated chronic gastritis. Gut, 31, 134-8. crossref(new window)

20.
Hsu PI, Hwang IR, Cittelly D, et al (2002). Clinical presentation in relation to diversity within the Helicobacter pylori cag pathogenicity island. Am J Gastroenterol, 97, 2231-8. crossref(new window)

21.
Kapadia CR (2003). Gastric atrophy, metaplasia, and dysplasia: a clinical perspective. J Clin Gastroenterol, 36, 29-36. crossref(new window)

22.
Kelley JR, Duggan JM (2003). Gastric cancer epidemiology and risk factors. J Clin Epidemiol, 56, 1-9. crossref(new window)

23.
Kusters JG, van Vliet AH, Kuipers EJ (2006). Pathogenesis of helicobacter pylori infection. Clin Microbiol Rev, 19, 449-90. crossref(new window)

24.
Kwok T, Zabler D, Urman S, et al (2007). Helicobacter exploits integrin for type IV secretion and kinase activation. Nature, 449, 862-6. crossref(new window)

25.
Li CQ, Pignatelli B, Ohshima H (2001). Increased oxidative and nitrative stress in human stomach associated with cagA+ Helicobacter pylori infection and inflammation. Dig Dis Sci, 46, 836-44. crossref(new window)

26.
Logan RP (1996). Adherence of Helicobacter pylori. Aliment Pharmacol Ther, 10, 3-15. crossref(new window)

27.
Lu Y, Redlinger TE, Avitia R, et al (2002). Isolation and genotyping of Helicobacter pylori from untreated municipal wastewater. Appl Environ Microbiol, 68, 1436-9. crossref(new window)

28.
Mahdavi J, Sonden B, Hurtig M, et al (2002). Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science, 297, 573-8. crossref(new window)

29.
Malekzadeh R, Derakhshan MH, Malekzadeh Z (2009). Gastric cancer in Iran: epidemiology and risk factors. Arch Iran Med, 12, 576-83.

30.
Matsuhisa TM, Yamada NY, Kato SK, et al (2003). Helicobacter pylori infection, mucosal atrophy and intestinal metaplasia in Asian populations: a comparative study in age-, genderand endoscopic diagnosis-matched subjects. Helicobacter, 8, 29-35. crossref(new window)

31.
McColl KE, El-Omar E (2002). How does H. pylori infection cause gastric cancer? Keio J Med, 51, 53-6. crossref(new window)

32.
Megraud F (2001). Impact of Helicobacter pylori virulence on the outcome of gastroduodenal diseases: lessons from the microbiologist. Dig Dis, 19, 99-103. crossref(new window)

33.
Miernyk K, Morris J, Bruden D, et al (2011). Characterization of Helicobacter pylori cagA and vacA genotypes among Alaskans and their correlation with clinical disease. J Clin Microbiol, 49, 3114-21. crossref(new window)

34.
Mizushima T, Sugiyama T, Kobayashi T, et al (2002). Decreased adherence of cagG-deleted Helicobacter pylori to gastric epithelial cells in Japanese clinical isolates. Helicobacter, 7, 22-9. crossref(new window)

35.
Mousavi SM, Gouya MM, Ramazani R, et al (2009). Cancer incidence and mortality in Iran. Ann Oncol, 20, 556-63.

36.
Parkin DM (2004). International variation. Oncogene, 23, 6329-40. crossref(new window)

37.
Parsonnet J, Friedman GD, Orentreich N, et al (1997). Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut, 40, 297-301. crossref(new window)

38.
Peek RM, Jr., Blaser MJ (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer, 2, 28-37. crossref(new window)

39.
Perez-Perez GI, Peek RM, Legath AJ, et al (1999). The role of CagA status in gastric and extragastric complications of helicobacter pylori. J Physiol Pharmacol, 50, 833-45.

40.
Rieder G, Hatz RA, Moran AP, et al (1997). Role of adherence in interleukin-8 induction in Helicobacter pylori-associated gastritis. Infect Immun, 65, 3622-30.

41.
Sadjadi A, Malekzadeh R, Derakhshan MH, et al (2003). Cancer occurrence in Ardabil: results of a population-based cancer registry from Iran. Int J Cancer, 107, 113-8. crossref(new window)

42.
Samson R, Legendre JB, Christen R, et al (2005). Transfer of Pectobacterium chrysanthemi (Burkholder et al 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol, 55, 1415-27. crossref(new window)

43.
Schmidt HM, Andres S, Nilsson C, et al (2010). The cag PAI is intact and functional but HP0521 varies significantly in Helicobacter pylori isolates from Malaysia and Singapore. Eur J Clin Microbiol Infect Dis, 29, 439-51. crossref(new window)

44.
Segal ED, Falkow S, Tompkins LS (1996). Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A, 93, 1259-64. crossref(new window)

45.
Sepulveda AR, Graham DY (2002). Role of Helicobacter pylori in gastric carcinogenesis. Gastroenterol Clin North Am, 31, 517-35. crossref(new window)

46.
Shaffer CL, Gaddy JA, Loh JT, et al (2011). Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog, 7, 1002237. crossref(new window)

47.
Sharma SA, Tummuru MK, Miller GG, et al (1995). Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect Immun, 63, 1681-87.

48.
Shimoyama T, Everett SM, Dixon MF, et al (1998). Chemokine mRNA expression in gastric mucosa is associated with Helicobacter pylori cagA positivity and severity of gastritis. J Clin Pathol, 51, 765-70. crossref(new window)

49.
Shiota S, Watada M, Matsunari O, et al (2012). Helicobacter pylori iceA, clinical outcomes, and correlation with cagA: a meta-analysis. PLoS One, 7, 30354. crossref(new window)

50.
Stein M, Rappuoli R, Covacci A (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A, 97, 1263-8. crossref(new window)

51.
Tomb JF, White O, Kerlavage AR, et al (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388, 539-47. crossref(new window)

52.
Tummuru MK, Sharma SA, Blaser MJ (1995). Helicobacter pylori picB, a homologue of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol Microbiol, 18, 867-76. crossref(new window)

53.
Wang H, Huang S, Zhao J, et al (2013). Expression of CagL from Helicobacter pylori and Preliminary Study of its Biological Function. Indian J Microbiol, 53, 36-40. crossref(new window)

54.
Weel JF, van der Hulst RW, Gerrits Y, et al (1996). The interrelationship between cytotoxin-associated gene A, vacuolating cytotoxin, and Helicobacter pylori-related diseases. J Infect Dis, 173, 1171-5. crossref(new window)

55.
Yadegar A, Mobarez AM, Alebouyeh M, et al (2014). Clinical relevance of cagL gene and virulence genotypes with disease outcomes in a Helicobacter pylori infected population from Iran. World J Microbiol Biotechnol, 30, 2481-90. crossref(new window)

56.
Yamaoka Y (2010). Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol, 7, 629-41.

57.
Yamaoka Y, Kita M, Kodama T, et al (1998). Chemokines in the gastric mucosa in Helicobacter pylori infection. Gut, 42, 609-17. crossref(new window)

58.
Yeh YC, Chang WL, Yang HB, et al (2011). H. pylori cagL amino acid sequence polymorphism Y58E59 induces a corpus shift of gastric integrin alpha5beta1 related with gastric carcinogenesis. Mol Carcinog, 50, 751-9. crossref(new window)

59.
Zhou J, Zhang H, Wu J, et al (2011). A novel multidomain polyketide synthase is essential for zeamine production and the virulence of Dickeya zeae. Mol Plant Microbe Interact, 24, 1156-64. crossref(new window)