JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHRNA5 rs16969968 Polymorphism Association with Risk of Lung Cancer - Evidence from 17,962 Lung Cancer Cases and 77,216 Control Subjects
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CHRNA5 rs16969968 Polymorphism Association with Risk of Lung Cancer - Evidence from 17,962 Lung Cancer Cases and 77,216 Control Subjects
Xu, Zhi-Wei; Wang, Guan-Nan; Dong, Zhou-Zhou; Li, Tao-Hong; Cao, Chao; Jin, Yu-Hong;
  PDF(new window)
 Abstract
Background: Genetic studies have shown a possible relationship between the rs16969968 polymorphism in CHRNA5 and the risk of lung cancer. However, the results have been conflicting. Thus we rigorously conducted a meta-analysis to clarify any association. Materials and Methods: A total of 10 case-control studies involving 17,962 lung cancer cases and 77,216 control subjects were analysed. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to measure the strength of the association. Results: We found the CHRNA5 rs16969968 polymorphism to be associated with the risk of lung cancer (AA vs GG: OR
 Keywords
rs16969968;polymorphism;lung cancer;CHRNA5;meta-analysis;
 Language
English
 Cited by
 References
1.
Ahmad D, Bakairy AK, Katheri AM, et al (2015). MDM2 (RS769412) G>A Polymorphism in cigarette smokers: a clue for the susceptibility to smoking and lung cancer risk. Asian Pac J Cancer Prev, 16, 4057-60. crossref(new window)

2.
Bierut LJ, Stitzel JA, Wang JC, et al (2008). Variants in Nicotinic Receptors and Risk for Nicotine Dependence. Am J Psychiat, 165, 1163-71. crossref(new window)

3.
Cao C, Sun SF, Lv D, et al (2013). Utility of VEGF and sVEGFR-1 in bronchoalveolar lavage fluid for differential diagnosis of primary lung cancer. Asian Pac J Cancer Prev, 14, 2443-6. crossref(new window)

4.
Cao C, Wang R, Wang J, et al (2012). Body mass index and mortality in chronic obstructive pulmonary disease: a metaanalysis. PLoS One, 7, 43892. crossref(new window)

5.
Carcereny E, Ramirez JL, Sanchez-Ronco M, et al (2010). Blood-based CHRNA3 single nucleotide polymorphism and outcome in advanced non-small-cell lung cancer patients. Lung Cancer-J Iaslc, 68, 491-7. crossref(new window)

6.
Chen Z, Xu Z, Sun S, et al (2014). TGF-beta1, IL-6, and TNFalpha in bronchoalveolar lavage fluid: useful markers for lung cancer? Sci Rep, 4, 5595.

7.
Dasgupta P, Kinkade R, Joshi B, et al (2006). Nicotine inhibits apoptosis induced by chemotherapeutic drugs by upregulating XIAP and survivin. Proc Natl Acad Sci U S A, 103, 6332-7. crossref(new window)

8.
Dasgupta P, Rizwani W, Pillai S, et al (2009). Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer, 124, 36-45. crossref(new window)

9.
Egger M, Davey SG, Schneider M, et al (1997). Bias in metaanalysis detected by a simple, graphical test. BMJ, 315, 629-34. crossref(new window)

10.
Falvella FS, Galvan A, Frullanti E, et al (2009). Transcription deregulation at the 15q25 locus in association with lung adenocarcinoma risk. Clin Cancer Res, 15, 1837-42. crossref(new window)

11.
Fowler CD, Lu Q, Johnson PM, et al (2011). Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature, 471, 597-601. crossref(new window)

12.
Gabrielsen ME, Romundstad P, Langhammer A, et al (2013). Association between a 15q25 gene variant, nicotine-related habits, lung cancer and COPD among 56,307 individuals from the HUNT study in Norway. Eur J Hum Genet, 21, 1293-9. crossref(new window)

13.
Hansen HM, Xiao Y, Rice T, et al (2010). Fine mapping of chromosome 15q25.1 lung cancer susceptibility in African-Americans. Hum Mol Genet, 19, 3652-61. crossref(new window)

14.
He P, Yang XX, He XQ, et al (2014). CHRNA3 Polymorphism Modifies Lung Adenocarcinoma Risk in the Chinese Han Population. Int J Mol Sci, 15, 5446-57. crossref(new window)

15.
Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat Med, 21, 1539-58. crossref(new window)

16.
Higgins JP, Thompson SG, Deeks JJ, et al (2003). Measuring inconsistency in meta-analyses. BMJ, 327, 557-60. crossref(new window)

17.
Hung RJ, McKay JD, Gaborieau V, et al (2008). A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature, 452, 633-7. crossref(new window)

18.
Islam MS, Ahmed MU, Sayeed MS, et al (2013). Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta, 416, 11-19. crossref(new window)

19.
Jaworowska E, Trubicka J, Lener MR, et al (2011). Smoking related cancers and loci at chromosomes 15q25, 5p15, 6p22.1 and 6p21.33 in the Polish population. PLoS One, 6, 25057. crossref(new window)

20.
Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90. crossref(new window)

21.
Le Marchand L, Derby KS, Murphy SE, et al (2008). Smokers with the CHRNA lung cancer-associated variants are exposed to higher levels of nicotine equivalents and a carcinogenic tobacco-specific nitrosamine. Cancer Res, 68, 9137-40. crossref(new window)

22.
Lips EH, Gaborieau V, McKay JD, et al (2010). Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. Int J Epidemiol, 39, 563-577. crossref(new window)

23.
Liu JZ, Tozzi F, Waterworth DM, et al (2010). Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet, 42, 436-40. crossref(new window)

24.
Macqueen DA, Heckman BW, Blank MD, et al (2014). Variation in the alpha 5 nicotinic acetylcholine receptor subunit gene predicts cigarette smoking intensity as a function of nicotine content. Pharmacogenomics J, 14, 70-76. crossref(new window)

25.
Saccone NL, Saccone SF, Hinrichs AL, et al (2009). Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet, 150, 453-66.

26.
Saccone SF, Hinrichs AL, Saccone NL, et al (2007). Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet, 16, 36-49.

27.
Sakoda LC, Loomis MM, Doherty JA, et al (2011). Chromosome 15q24-25.1 variants, diet, and lung cancer susceptibility in cigarette smokers. Cancer Causes Control, 22, 449-61. crossref(new window)

28.
Sasaki H, Hikosaka Y, Okuda K, et al (2010). CHRNA5 gene D398N polymorphism in Japanese lung adenocarcinoma. J Surg Res, 162, 75-78. crossref(new window)

29.
Shiraishi K, Kohno T, Kunitoh H, et al (2009). Contribution of nicotine acetylcholine receptor polymorphisms to lung cancer risk in a smoking-independent manner in the Japanese. Carcinogenesis, 30, 65-70.

30.
Spitz MR, Amos CI, Land S, et al (2013). Role of selected genetic variants in lung cancer risk in African Americans. J Thorac Oncol, 8, 391-7. crossref(new window)

31.
Timofeeva MN, McKay JD, Smith GD, et al (2011). Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. Cancer Epidemiol Biomarkers Prev, 20, 2250-61. crossref(new window)

32.
Toh CK, Gao F, Lim WT, et al (2006). Never-smokers with lung cancer: epidemiologic evidence of a distinct disease entity. J Clin Oncol, 24, 2245-51. crossref(new window)

33.
Truong T, Hung RJ, Amos CI, et al (2010). Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J Natl Cancer Inst, 102, 959-971. crossref(new window)

34.
Walsh KM, Gorlov IP, Hansen HM, et al (2013). Fine-mapping of the 5p15.33, 6p22.1-p21.31, and 15q25.1 regions identifies functional and histology-specific lung cancer susceptibility loci in African-Americans. Cancer Epidemiol Biomarkers Prev, 22, 251-60. crossref(new window)

35.
Ware JJ, van den Bree MB, Munafo MR (2011). Association of the CHRNA5-A3-B4 gene cluster with heaviness of smoking: a meta-analysis. Nicotine Tob Res, 13, 1167-75. crossref(new window)

36.
Wei C, Han Y, Spitz MR, et al (2011). A case-control study of a sex-specific association between a 15q25 variant and lung cancer risk. Cancer Epidemiol Biomarkers Prev, 20, 2603-9. crossref(new window)

37.
Weiss RB, Baker TB, Cannon DS, et al (2008). A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet, 4, 1000125. crossref(new window)

38.
Wojas-Krawczyk K, Krawczyk P, Biernacka B, et al (2012). The polymorphism of the CHRNA5 gene and the strength of nicotine addiction in lung cancer and COPD patients. Eur J Cancer Prev, 21, 111-7. crossref(new window)

39.
Yang P, Li Y, Jiang R, et al (2010). A rigorous and comprehensive validation: common genetic variations and lung cancer. Cancer Epidemiol Biomarkers Prev, 19, 240-4. crossref(new window)

40.
Young RP, Hopkins RJ, Hay BA, et al (2008). Lung cancer gene associated with COPD: triple whammy or possible confounding effect? Eur Respir J, 32, 1158-64. crossref(new window)

41.
Zienolddiny S, Skaug V, Landvik NE, et al (2009). The TERTCLPTM1L lung cancer susceptibility variant associates with higher DNA adduct formation in the lung. Carcinogenesis, 30, 1368-71. crossref(new window)