Advanced SearchSearch Tips
Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways
Anwar, Sumadi Lukman; Wahyono, Artanto; Aryandono, Teguh; Haryono, Samuel J;
  PDF(new window)
Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, , and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.
Caveolin-1;breast cancer;signaling pathway;autophagy;prognosis;therapy;
 Cited by
Expression of KCNA5 Protein in Human Mammary Epithelial Cell Line Associated with Caveolin-1, The Journal of Membrane Biology, 2016, 249, 4, 449  crossref(new windwow)
Agelaki S, Spiliotaki M, Markomanolaki H, et al (2009). Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther, 8, 1470-7. crossref(new window)

Bhowmick NA, Neilson EG, Moses HL (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432, 332-7. crossref(new window)

Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, et al 2010. The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 9, 1960-71. crossref(new window)

Bucci M, Gratton JP, Rudic RD, et al (2000). In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med, 6, 1362-7. crossref(new window)

Burke P, Schooler K, Wiley HS (2001). Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell, 12, 1897-1910. crossref(new window)

Cai C, Chen J (2004). Overexpression of caveolin-1 induces alteration of multidrug resistance in Hs578T breast adenocarcinoma cells. Int J Cancer, 111, 522-9. crossref(new window)

Carroll JS, Meyer CA, Song J, et al (2006). Genome-wide analysis of estrogen receptor binding sites. Nat Genet, 38, 1289-97. crossref(new window)

Castello-Cros R, Bonuccelli G, Molchansky A, et al (2011). Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis. Cell Cycle, 10, 2021-34. crossref(new window)

Cirri P, Chiarugi P (2011). Cancer associated fibroblasts : the dark side of the coin. Am J Cancer Res, 1, 482-97.

Clemons M, Goss P (2001). Estrogen and the risk of breast cancer. NEJM, 344, 276-285. crossref(new window)

Cohen AW, Razani B, Wang XB, et al (2003). Caveolin-1- deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol, 285, C222-5. crossref(new window)

Dong X, Mao S, Wen H (2013). Upregulation of proinflammatory genes in skin lesions may be the cause of keloid formation (Review). Biomed Rep, 1, 833-6.

El-Gendi SM, Mostafa MF, El-Gendi AM, et al (2012). Stromal caveolin-1 expression in breast carcinoma. Correlation with early tumor recurrence and clinical outcome. Pathol Oncol Res, 18, 459-69. crossref(new window)

Elsheikh SE, Green AR, Rakha EA, et al (2008). Caveolin 1 and Caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer, 99, 327-34. crossref(new window)

Van den Eynden GG, Van Laere SJ, Van der Auwera I, et al (2006).Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat, 95, 219-28. crossref(new window)

Fielding PE, Chau P, Liu D, Spencer TA, Fielding CJ, (2004). Mechanism of platelet-derived growth factor-dependent caveolin-1 phosphorylation: relationship to sterol binding and the role of serine-80. Biochemistry, 43, 2578-86. crossref(new window)

Finn RS, Dering J, Ginther C (2007). Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/"triple-negative" breast cancer cell lines growing in vitro. Breast Cancer Res Treat, 105, 319-26. crossref(new window)

Finn RS, Aleshin A, Dering J, et al (2013). Molecular subtype and response to dasatinib, an Src/Abl small molecule kinase inhibitor, in hepatocellular carcinoma cell lines in vitro. Hepatology, 57, 1838-46. crossref(new window)

Fiucci G, Ravid D, Reich R, Liscovitch M, et al (2002). Caveolin-1 inhibits anchorage-independent growth anoikis and invasiveness in MFC-7 human breast cancer cells. Oncogene, 21, 2365-2375. crossref(new window)

Fujita Y, Maruyama S, Kogo H, Matsuo S, Fujimoto T (2004). Caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Kidney Int, 66, 1794-04. crossref(new window)

Giusiano S, Cochet C, Filhol O, et al (2011). Protein kinase $CK2{\alpha}$ subunit over-expression correlates with metastatic risk in breast carcinomas: Quantitative immunohistochemistry in tissue microarrays. Eur J Cancer, 47, 792-801. crossref(new window)

Glait C, Ravid D, Lee SW, Liscovitch M, Werner H (2006). Caveolin-1 controls BRCA1 gene expression and cellular localization in human breast cancer cells. FEBS Lett, 580, 5268-74. crossref(new window)

Goetz JG, Minguet S, Navarro-Lerida I, et al (2011). Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell, 146, 148-63. crossref(new window)

Gupta R, Toufaily C, Annabi B (2014). Caveolin and cavin family members: dual roles in cancer. Biochimie, 107, 188-202. crossref(new window)

Hayashi K, Matsuda S, Machida K, et al (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res, 61, 2361-64.

Hino M, Doihara H, Kobayashi K, Aoe M, Shimizu N (2003). Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today, 33, 486-90.

Jezierska-Drutel A, Rosenzweig SA, Neumann CA, et al (2013). Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res, 119, 107-25. crossref(new window)

Joglekar M, Elbazanti WO, Weitzman MD, Lehma H, van Golen KL (2015). Caveolin-1 mediates inflamatory breast cancer cell invasion via the Akt1 pathway and RhoC GTPase. J Cell Biochem, 116, 923-33. crossref(new window)

Kiss AL (2012). Caveolae and the regulation of endocytosis. Adv Exp Med Biol, 729, 14-28. crossref(new window)

Koo JS, Park S, Kim SI, Lee S, Park BW (2011). The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer. Tumour Biol, 32, 787-99. crossref(new window)

Lajoie P, Nabi IR (2010). Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol, 282, 135-63. crossref(new window)

Lavie Y, Fiucci G, Liscovitch M (2001). Upregulation of caveolin in multidrug resistant cancer cells: functional implications. Adv Drug Deliv Rev, 49, 317-23. crossref(new window)

Lee H, Park DS, Razani B, et al (2002). Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol, 161, 1357-69. crossref(new window)

Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE, (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 16, 1391-97. crossref(new window)

Ma X, Liu L, Nie W, et al (2013). Prognostic role of caveolin in breast cancer: a meta-analysis. Breast, 22, 462-9. crossref(new window)

Maldonado-Báez L, Williamson C, Donaldson JG (2013). Clathrin-independent endocytosis: A cargo-centric view. Exp Cell Res, 319, 2759-69. crossref(new window)

Martinez-Outschoorn U, Sotgia F, Lisanti MP (2014). Tumor microenvironment and metabolic synergy in breast cancers: Critical importance of mitochondrial fuels and function. Semin Oncol, 41, 195-216. crossref(new window)

Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker- Menezes D, et al (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NF${kappa}B$ activation in the tumor stromal microenvironment. Cell Cycle, 9, 3515-33. crossref(new window)

Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, et al (2011). Cytokine production and inflammation drive autophagy in the tumor microenvironment: Role of stromal caveolin-1 as a key regulator. Cell Cycle, 10, 1784-93. crossref(new window)

Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, et al (2010). Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle, 9, 2423-33. crossref(new window)

Martinez-Outschoorn UE, Sotgia F, Lisanti MP, (2015). Caveolae and signalling in cancer. Nat Rev Cancer, 15, 225-37. crossref(new window)

Mercier I, Camacho J, Titchen K, et al (2012). Caveolin-1 and accelerated host aging in the breast tumor microenvironment: Chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am J Pathol, 181, 278-93. crossref(new window)

Mercier I, Casimiro MC, Wang C, et al (2008). Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. Cancer Biol Ther, 7, 1212-25. crossref(new window)

Mercier I, Lisanti M (2012). Caveolin-1 and breast cancer: a new clinical perspective. Adv Exp Med Biol, 729, 83-94. crossref(new window)

Mercier I, Lisanti MP (2012). Caveolin-1 and breast cancer: a new clinical perspective. caveolins and caveolae: roles in signaling and disease mechanisms. Adv Exp Med Biol, 729, 83-94. crossref(new window)

Mineo C, Gill GN, Anderson RGW, (1999). Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem, 274, 30636-43. crossref(new window)

Orom UA, Lim MK, Savage JE, et al (2012). MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction. Cell Cycle, 11, 1291-5. crossref(new window)

Otranto M, Sarrazy V, Bonte F, et al (2012). The role of the myofibroblast in tumor stroma remodeling. Cell Adh Mig, 6, 203-19. crossref(new window)

Park DS, Lee H, Frank PG, et al (2002). Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell, 13, 3416-30. crossref(new window)

Park JH, Han HJ (2009). Caveolin-1 plays important role in EGFinduced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol, 297, 935-44. crossref(new window)

Park JH, Lee MY, Han HJ, et al (2009). A potential role for caveolin-1 in estradiol-17beta-induced proliferation of mouse embryonic stem cells: involvement of Src, PI3K/Akt, and MAPKs pathways. Int J Biochem Cell Biol, 41, 659-65. crossref(new window)

Park SS, Kim JE, Kim YA, Kim YC, Kim SW (2005). Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathology, 47, 625-30. crossref(new window)

Park WY, Park JS, Cho KA, et al (2000). Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem, 275, 20847-52. crossref(new window)

Patani N, Lambros MB, Natrajan R, et al (2012). Non-existence of caveolin-1 gene mutations in human breast cancer. Breast Cancer Res Treat, 131, 307-10. crossref(new window)

Patani N, Martin LA, Reis-Filho JS, Dowsett M, (2012). The role of caveolin-1 in human breast cancer. Breast Cancer Res Treat, 131, 1-15. crossref(new window)

Pavlides S, Tsirigos A, Migneco G, et al (2010). The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle, 9, 3485-505. crossref(new window)

White BP, Molloy MP, Zhao H, et al (2013). Extranuclear ERalpha is associated with regression of T47D PKCalphaoverexpressing, tamoxifen-resistant breast cancer. Mol Cancer, 12, 34. crossref(new window)

Perrone G, Altomare V, Zagami M, et al (2009). Caveolin-1 expression in human breast lobular cancer progression. Mod Pathol, 22, 71-8. crossref(new window)

Qian N, Ueno T, Kawaguchi-Sakita N, et al (2011). Prognostic significance of tumor/stromal caveolin-1 expression in breast cancer patients. Cancer Sci, 102, 1590-6. crossref(new window)

Rao X, Evans J, Chae H, et al (2012). CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene, 32, 4519-28

Ren M, Liu F, Zhu Y, et al (2014). Absence of caveolin-1 expression in carcinoma associated fibroblast of invasive micropapollary carcinoma of the breast predicts poor patient outcome. Virchows Arch, 465, 291-8. crossref(new window)

Pinilla SM, Honrado E, Hardisson D, Benítez J, Palacios J, (2006). Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat, 99, 85-90. crossref(new window)

Sagara Y, Mimori K, Yoshinaga K, et al (2004). Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer, 91, 959-65.

Savage K, Lambros MB, Robertson D, et al (2007). Caveolin 1 is overexpressed and amplified in a subset of basallike and metaplastic breast carcinomas: A morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res, 13, 90-101. crossref(new window)

Schlegel A, Wang C, Katzenellenbogen BS, Pestell RG, Lisanti MP, (1999). Caveolin-1 potentiates estrogen receptor ${\alpha}$ (ER ${\alpha}$) signaling. Caveolin-1 drives ligand-independent nuclear translocation and activation of ER ${\aopha}$. J Biol Chem, 274, 33551-6. crossref(new window)

Schlegel A, Wang C, Pestell RG, Lisanti MP, (2001). Ligandindependent activation of oestrogen receptor alpha by caveolin-1. Bioch J, 359, 203-10. crossref(new window)

Sekhar SC, Kasai T, Satoh A, et al (2013). Identification of caveolin-1 as a potential causative factor in the generation of trastuzumab resistance in breast cancer cells. J Cancer, 4, 391-401. crossref(new window)

Senetta R, Stella G, Pozzi E, et al (2013). Caveolin-1 as a promoter of tumour spreading: When, how, where and why. J Cell Mol Med, 17, 325-36. crossref(new window)

Shajahan AN, Dobbin ZC, Hickman FE, Dakshanamurthy S, Clarke R, (2012). Tyrosine-phosphorylated caveolin-1 (Tyr- 14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal Kinase (JNK). J Biol Chem, 287, 17682-92. crossref(new window)

Siegel R, Ma J, Zou Z, Jemal A, (2014). Cancer statistics, 2014. CA Cancer J Clin, 64, 9-29. crossref(new window)

Simpkins SA, Hanby AM, Holliday DL, Speirs V, (2012). Clinical and functional significance of loss of caveolin-1 expression in breast cancer-associated fibroblasts. J Pathol, 227, 490-8. crossref(new window)

Sloan EK, Ciocca DR, Pouliot N, et al (2009). Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol, 174, 2035-43. crossref(new window)

Sloan EK, Stanley KL, Anderson RL, (2004). Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene, 23, 7893-7. crossref(new window)

Sotgia F (2012). Caveolin-1 and Cancer Metabolism in the Tumor Microenvironment: Markers, Models, and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 7, 423-467. crossref(new window)

Sotgia F, Martinez-Outschoorn UE, Howell A, et al (2006). Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Res, 66, 10647-51. crossref(new window)

Sotgia F, Martinez-Outschoorn UE, Pavlides S, et al (2011). Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Br Cancer Res, 13, 213. crossref(new window)

Syeed N, Husain SA, Abdullah S, et al (2010). Caveolin-1 promotes mammary tumorigenesis: Mutational profile of the Kashmiri population. Asian Pac J Cancer Prev, 11, 689-96.

Syeed N, Husain SA, Abdullah S, et al (2010). Mutational profile of the CAV-1 gene in breast cancer cases in the ethnic Kashmiri population. Asian Pac J Cancer Prev, 11, 1099-105.

Tagawa A, Mezzacasa A, Hayer A, et al (2005). Assembly and trafficking of caveolar domains in the cell: Caveolae as stable, cargo-triggered, vesicular transporters. J Cell Biol, 170, 769-79. crossref(new window)

Thomas NB, Hutcheson IR, Campbell L, et al (2010). Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance. Breast Cancer Res Treat, 119, 575-91. crossref(new window)

Tian F, Wu H, Li Z, et al (2009). Activated PKCalpha/ERK1/2 signaling inhibits tamoxifen-induced apoptosis in C6 cells. Cancer Invest, 27, 802-8. crossref(new window)

Trimmer C, Sotgia F, Whitaker-Menezes D, et al (2011). Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: A new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther, 11, 383-94. crossref(new window)

Tryfonopoulos D, Walsh S, Collins DM, et al (2011). Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol, 22, 2234-40. crossref(new window)

Wang XX, Wu Z, Huang HF, et al (2013). Caveolin-1, through its ability to negatively regulate TLR4, is a crucial determinant of MAPK activation in LPS-challenged mammary epithelial cells. Asian Pac J Cancer Prev, 14, 2295-9. crossref(new window)

Wang Y, Yu J, Zhan Q (2008). BRCA1 regulates caveolin-1 expression and inhibits cell invasiveness. Biochem Biophys Res Commun, 370, 201-6. crossref(new window)

Wang Z, Wang N, Li W, et al (2014). Caveolin-1 mediates chemoresistance in breast cancer stem cells via ${\beta}$-catenin/ ABCG2 signaling pathway. Carcinogenesis, 35, 2346-56. crossref(new window)

Weigelt B, Geyer FC, Natrajan R, et al (2010). The molecular underpinning of lobular histological growth pattern: A genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol, 220, 45-57. crossref(new window)

Williams TM, Medina F, Badano I, et al (2004). Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo: Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem, 279, 51630-46. crossref(new window)

Williams TM, Lee H, Cheung MW, et al (2004). Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis. Role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. J Bioll Chem, 279, 24745-56. crossref(new window)

Williams TM, Lisanti MP, (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol, 288, 494-506.

Williams TM, Lisanti MP, (2004). The caveolin proteins. Genome Biol, 5, 214. crossref(new window)

Witkiewicz AK, Dasgupta A, Sotgia F, et al (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol, 174, 2023-34. crossref(new window)

Witkiewicz AK, Kline J, Queenan M, et al (2011). Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle, 10, 1794-1809. crossref(new window)

Witkiewicz AK, Dasgupta A, Nguyen K, et al (2009). Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther, 8, 1071-9. crossref(new window)

Wu P, Qi B, Zhu H, et al (2007). Suppression of staurosporinemediated apoptosis in Hs578T breast cells through inhibition of neutral-sphingomyelinase by caveolin-1. Cancer Lett, 256, 64-72. crossref(new window)

Zagouri F, Sergentanis TN, Chrysikos D, Filipits M, Bartsch R, (2012). mTOR inhibitors in breast cancer: A systematic review. Gynecol Oncol, 127, 662-72. crossref(new window)

Zhang EY, Cristofanilli M, Robertson F, et al (2013). Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer. J Proteome Res, 12, 2805-17. crossref(new window)

Zou W, McDaneld L, Smith LM, (2003). Caveolin-1 haploinsufficiency leads to partial transformation of human breast epithelial cells. AntiCancer Res, 23, 4581-6.