JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression
Nana, Andre Wendindonde; Yang, Pei-Ming; Lin, Hung-Yun;
  PDF(new window)
 Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor () superfamily is a large group of structurally related proteins including subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (, ) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the subfamily yields advantageous results, enhancing BMPs production is also beneficial.
 Keywords
Glioblastoma;transforming growth factor () superfamily;anti- drugs;
 Language
English
 Cited by
1.
Expression of EGFR in Paired New and Recurrent Glioblastomas,;;;;;;

Asian Pacific Journal of Cancer Prevention, 2016. vol.17. 9, pp.4205-4208 crossref(new window)
2.
Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma,;;;

Asian Pacific Journal of Cancer Prevention, 2016. vol.17. 3, pp.927-932 crossref(new window)
1.
Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma, Asian Pacific Journal of Cancer Prevention, 2016, 17, 3, 927  crossref(new windwow)
2.
Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease, Journal of Neuro-Oncology, 2017, 131, 2, 233  crossref(new windwow)
3.
Blockade of transforming growth factor-β signaling enhances oncolytic herpes simplex virus efficacy in patient-derived recurrent glioblastoma models, International Journal of Cancer, 2017, 141, 11, 2348  crossref(new windwow)
4.
TGF-β Signaling in Gastrointestinal Cancers: Progress in Basic and Clinical Research, Journal of Clinical Medicine, 2017, 6, 1, 11  crossref(new windwow)
 References
1.
Akhurst RJ, Hata A (2012). Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov, 11, 790-811. crossref(new window)

2.
Alexandrow MG, Moses HL (1995). Transforming growth factor beta and cell cycle regulation. Cancer Res, 55, 1452-7.

3.
Anido J, Saez-Borderias A, Gonzalez-Junca A, et al (2010). TGFbeta Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell, 18, 655-68. crossref(new window)

4.
Annes JP, Munger JS, Rifkin DB (2003). Making sense of latent TGFbeta activation. J Cell Sci, 116, 217-24. crossref(new window)

5.
Ashley DM, Kong FM, Bigner DD, et al (1998). Endogenous expression of transforming growth factor beta1 inhibits growth and tumorigenicity and enhances Fas-mediated apoptosis in a murine high-grade glioma model. Cancer Res, 58, 302-9.

6.
Baxter RC (2014). IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer, 14, 329-41. crossref(new window)

7.
Bechmann I, Woodroofe N (2014). Immune Privilege of the Brain. In 'Neuroinflammation and CNS Disorders', Eds John Wiley & Sons, Ltd, 1-8

8.
Beier CP, Kumar P, Meyer K, et al (2012). The cancer stem cell subtype determines immune infiltration of glioblastoma. Stem Cells Dev, 21, 2753-61. crossref(new window)

9.
Bergh JJ, Lin HY, Lansing L, et al (2005). Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinol, 146, 2864-71. crossref(new window)

10.
Bonavia R, Inda MM, Cavenee WK, et al (2011). Heterogeneity maintenance in glioblastoma: a social network. Cancer Res, 71, 4055-60. crossref(new window)

11.
Bruna A, Darken RS, Rojo F, et al (2007). High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell, 11, 147-60. crossref(new window)

12.
Cho DY, Lin SZ, Yang WK, et al (2013). Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant, 22, 731-9. crossref(new window)

13.
Cosset EC, Godet J, Entz-Werle N, et al (2012). Involvement of the TGF${\beta}$ pathway in the regulation of ${\alpha}5{\beta}1$ integrins by caveolin-1 in human glioblastoma. Int J Cancer, 131, 601-11. crossref(new window)

14.
D'Abaco GM, Kaye AH (2007). Integrins: molecular determinants of glioma invasion. J Clin Neurosci, 14, 1041-8. crossref(new window)

15.
De Silva T, Ye G, Liang YY, et al (2012). Nodal promotes glioblastoma cell growth. Front Endocrinol (Lausanne), 3, 59.

16.
den Hollander MW, Bensch F, Glaudemans AW, et al (2015). TGF-beta antibody uptake in recurrent high grade glioma imaged with 89Zr-fresolimumab PET. J Nucl Med.

17.
Dieterich LC, Mellberg S, Langenkamp E, et al (2012). Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and $TGF{\beta}2$ in vascular abnormalization. J Pathol, 228, 378-90. crossref(new window)

18.
Dubois CM, Laprise MH, Blanchette F, et al (1995). Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem, 270, 10618-24. crossref(new window)

19.
Eisele G, Wick A, Eisele AC, et al (2014). Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression. J Neurooncol, 117, 141-5. crossref(new window)

20.
Ernst A, Frisen J (2015). Adult Neurogenesis in Humans- Common and Unique Traits in Mammals. PLoS Biol, 13, 1002045. crossref(new window)

21.
Fong YC, Hsu SF, Wu CL, et al (2009). Transforming growth factor-beta1 increases cell migration and beta1 integrin up-regulation in human lung cancer cells. Lung Cancer, 64, 13-21. crossref(new window)

22.
Friese MA, Wischhusen J, Wick W, et al (2004). RNA interference targeting transforming growth factor-beta enhances NKG2Dmediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res, 64, 7596-603. crossref(new window)

23.
Goumans MJ, Valdimarsdottir G, Itoh S, et al (2002). Balancing the activation state of the endothelium via two distinct TGFbeta type I receptors. Embo J, 21, 1743-53. crossref(new window)

24.
Gross RE, Mehler MF, Mabie PC, et al (1996). Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron, 17, 595-606. crossref(new window)

25.
Guo W, Giancotti FG (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol, 5, 816-26. crossref(new window)

26.
Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-74. crossref(new window)

27.
Harris MG, Hulseberg P, Ling C, et al (2014). Immune privilege of the CNS is not the consequence of limited antigen sampling. Sci Rep, 4.

28.
Hau P, Jachimczak P, Schlingensiepen R, et al (2007). Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides, 17, 201-12. crossref(new window)

29.
Heino J, Massague J (1989). Transforming growth factor-beta switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J Biol Chem, 264, 21806-11.

30.
Held-Feindt J, Lutjohann B, Ungefroren H, et al (2003). Interaction of transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) in human glioma cells. J Neurooncol, 63, 117-27. crossref(new window)

31.
Helseth E, Dalen A, Unsgaard G, et al (1988). Type beta transforming growth factor and epidermal growth factor suppress the plasminogen activator activity in a human glioblastoma cell line. J Neurooncol, 6, 277-83. crossref(new window)

32.
Horiguchi M, Ota M, Rifkin DB (2012). Matrix control of transforming growth factor-${\beta}$ function. J Biochem, 152, 321-9. crossref(new window)

33.
Ikushima H, Todo T, Ino Y, et al (2009). Autocrine TGF-${\beta}$ signaling maintains tumorigenicity of glioma-initiating cells through sry-related HMG-Box factors. Cell Stem Cell, 5, 504-14. crossref(new window)

34.
Iqbal U, Albaghdadi H, Luo Y, et al (2010). Molecular imaging of glioblastoma multiforme using anti-insulin-like growth factor-binding protein-7 single-domain antibodies. British J Cancer, 103, 1606-16. crossref(new window)

35.
Izumoto S, Ohnishi T, Arita N, et al (1996). Gene expression of neural cell adhesion molecule L1 in malignant gliomas and biological significance of L1 in glioma invasion. Cancer Res, 56, 1440-4.

36.
Jacobs JF, Idema AJ, Bol KF, et al (2010). Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol, 225, 195-9. crossref(new window)

37.
Jazayeri SB, Rahimi-Movaghar V, Shokraneh F, et al (2013). Epidemiology of primary CNS tumors in Iran: a systematic review. Asian Pac J Cancer Prev, 14, 3979-85. crossref(new window)

38.
Joseph JV, Conroy S, Tomar T, et al (2014). TGF-[beta] is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis, 5, 1443. crossref(new window)

39.
Kaminska B, Kocyk M, Kijewska M (2013). TGF beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol, 986, 171-87. crossref(new window)

40.
Katz LH, Li Y, Chen JS, et al (2013). Targeting TGF-beta signaling in cancer. Expert Opin Ther Targets, 17, 743-60. crossref(new window)

41.
Kulkarni AB, Huh CG, Becker D, et al (1993). Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A, 90, 770-4. crossref(new window)

42.
Lacouture M, Morris J, Lawrence D, et al (2015). Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor ${\beta}$ by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol Immunother, 64, 437-46. crossref(new window)

43.
Lai J-H, Jan H-J, Liu L-W, et al (2013). Nodal regulates energy metabolism in glioma cells by inducing expression of hypoxia-inducible factor $1{\alpha}$. Neuro-Oncol, 15, 1330-41. crossref(new window)

44.
Lee CC, Jan HJ, Lai JH, et al (2010). Nodal promotes growth and invasion in human gliomas. Oncogene, 29, 3110-23. crossref(new window)

45.
Li W, Cogswell CA, LoTurco JJ (1998). Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci, 18, 8853-62.

46.
Liang H, Yi L, Wang X, et al (2014). Interleukin-17 facilitates the immune suppressor capacity of high-grade gliomaderived CD4 (+) CD25 (+) Foxp3 (+) T cells via releasing transforming growth factor beta. Scand J Immunol, 80, 144-50. crossref(new window)

47.
Lim DA, Tramontin AD, Trevejo JM, et al (2000). Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 28, 713-26. crossref(new window)

48.
Louis DN, Ohgaki H, Wiestler OD, et al (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 114. 97-109. crossref(new window)

49.
Luwor RB, Kaye AH, Zhu HJ (2008). Transforming growth factor-beta (TGF-beta) and brain tumours. J Clin Neurosci, 15, 845-55. crossref(new window)

50.
Martin S, Cosset EC, Terrand J, et al (2009). Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5) beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. Biochim Biophys Acta, 1793, 354-67. crossref(new window)

51.
Massague J (2012). TGFbeta signalling in context. Nat Rev Mol Cell Biol, 13, 616-30. crossref(new window)

52.
Massague J, Andres J, Attisano L, et al (1992). TGF-beta receptors. Mol Reprod Dev, 32, 99-104. crossref(new window)

53.
Messaoudi K, Clavreul A, Lagarce F (2015). Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discovery Today.

54.
Mikkelsen T, Brodie C, Finniss S, et al (2009). Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int J Cancer, 124, 2719-27. crossref(new window)

55.
Miyazono K (2000). Positive and negative regulation of TGFbeta signaling. J Cell Sci, 113, 1101-9.

56.
Morris JC, Tan AR, Olencki TE, et al (2014). Phase i study of gc1008 (fresolimumab): a human anti-transforming growth factor-beta ($tgf{\beta}$) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE, 9, 90353. crossref(new window)

57.
Mrugala MM (2013). Advances and challenges in the treatment of glioblastoma: a clinician’s perspective. Discov Med, 15, 221-30.

58.
Mu Y, Gudey S, Landstrom M (2012). Non-Smad signaling pathways. Cell Tissue Res, 347, 11-20. crossref(new window)

59.
Nakada M, Kita D, Watanabe T, et al (2011). Aberrant signaling pathways in glioma. Cancers (Basel), 3, 3242-78. crossref(new window)

60.
Nakagawa T, Kubota T, Kabuto M, et al (1994). Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors. J Neurosurg, 81, 69-77. crossref(new window)

61.
Ohgaki H, Kleihues P (2009). Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci, 100, 2235-41. crossref(new window)

62.
Onichtchouk D, Chen YG, Dosch R, et al (1999). Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature, 401, 480-5. crossref(new window)

63.
Ostrom QT, Bauchet L, Davis FG, et al (2014a). The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol, 16, 896-913. crossref(new window)

64.
Ostrom QT, Gittleman H, Liao P, et al (2014b). CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro- Oncol, 16, 1-63. crossref(new window)

65.
Pan JJ, Chang WJ, Barone TA, et al (2006). Increased expression of TGF-beta1 reduces tumor growth of human U-87 Glioblastoma Cells in vivo. Cancer Immunology, Immunotherapy, 55, 918-27. crossref(new window)

66.
Pen A, Moreno MJ, Durocher Y, et al (2008). Glioblastomasecreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-[beta] signaling. Oncogene, 27, 6834-44. crossref(new window)

67.
Penuelas S, Anido J, Prieto-Sanchez RM, et al (2009). TGFbeta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell, 15, 315-27. crossref(new window)

68.
Persano L, Pistollato F, Rampazzo E, et al (2012). BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting $HIF-1{\alpha}$ stability and MGMT expression. Cell Death Disease, 3, 412. crossref(new window)

69.
Piccirillo SG, Vescovi AL (2006). Bone morphogenetic proteins regulate tumorigenicity in human glioblastoma stem cells. Ernst Schering Found Symp Proc, 59-81.

70.
Platten M, Wick W, Wild-Bode C, et al (2000). Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via Up-regulation of alpha(V) beta(3) integrin expression. Biochem Biophys Res Commun, 268, 607-11. crossref(new window)

71.
Qiu B, Zhang D, Wang C, et al (2011). IL-10 and TGF-${\beta}2$ are overexpressed in tumor spheres cultured from human gliomas. Molecular Biology Reports, 38, 3585-91. crossref(new window)

72.
Quail DF, Siegers GM, Jewer M, et al (2013). Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol, 45, 885-98. crossref(new window)

73.
Rao JS, Steck PA, Mohanam S, et al (1993). Elevated levels of M(r) 92,000 type IV collagenase in human brain tumors. Cancer Res, 53, 2208-11.

74.
Reardon DA, Fink KL, Mikkelsen T, et al (2008). Randomized phase II study of cilengitide, an integrin-targeting arginineglycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol, 26, 5610-7. crossref(new window)

75.
Reguera-Nunez E, Roca C, Hardy E, et al (2014). Implantable controlled release devices for BMP-7 delivery and suppression of glioblastoma initiating cells. Biomaterials, 35, 2859-67. crossref(new window)

76.
Rich JN, Zhang M, Datto MB, et al (1999). Transforming growth factor-beta-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem, 274, 35053-8. crossref(new window)

77.
Rifkin DB (2005). Latent transforming growth factor-${\beta}$ (TGF-${\beta}$) binding proteins: orchestrators of TGF-${\beta}$ availability. J Biol Chem, 280, 7409-12. crossref(new window)

78.
Rodon L, Gonzalez-Junca A, Inda Mdel M, et al (2014). Active CREB1 promotes a malignant TGFbeta2 autocrine loop in glioblastoma. Cancer Discov, 4, 1230-41. crossref(new window)

79.
Roth P, Junker M, Tritschler I, et al (2010). GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res, 16, 3851-9. crossref(new window)

80.
Roth P, Silginer M, Goodman SL, et al (2013). Integrin control of the transforming growth factor-${\beta}$ pathway in glioblastoma. Brain, 136, 564-76. crossref(new window)

81.
Sanchez-Elsner T, Botella LM, Velasco B, et al (2001). Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem, 276, 38527-35. crossref(new window)

82.
Sanchez-Tillo E, Liu Y, de Barrios O, et al (2012). EMTactivating transcription factors in cancer: beyond EMT and tumor invasiveness. Cellular Molecular Life Sciences, 69, 3429-56. crossref(new window)

83.
Santibanez JF, Quintanilla M, Bernabeu C (2011). TGF-beta/ TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond), 121, 233-51. crossref(new window)

84.
Savary K, Caglayan D, Caja L, et al (2013). Snail depletes the tumorigenic potential of glioblastoma. Oncogene, 32, 5409-20. crossref(new window)

85.
Schaffner F, Ray AM, Dontenwill M (2013). Integrin ${\alpha}5{\beta}1$, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers, 5, 27-47. crossref(new window)

86.
Scheel C, Weinberg RA (2012). Cancer stem cells and epithelialmesenchymal transition: concepts and molecular links. Semin Cancer Biol, 22, 396-403. crossref(new window)

87.
Seoane J, Le HV, Shen L, et al (2004). Integration of smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 17, 211-23.

88.
Shen L, Qu X, Ma Y, et al (2014). Tumor suppressor NDRG2 tips the balance of oncogenic TGF-[beta] via EMT inhibition in colorectal cancer. Oncogenesis, 3, 86. crossref(new window)

89.
Shnaper S, Desbaillets I, Brown DA, et al (2009). Elevated levels of MIC-1/GDF15 in the cerebrospinal fluid of patients are associated with glioblastoma and worse outcome. Int J Cancer, 125, 2624-30. crossref(new window)

90.
Shull MM, Ormsby I, Kier AB, et al (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature, 359, 693-9. crossref(new window)

91.
Siegel PM, Massague J (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer, 3, 807-21. crossref(new window)

92.
Silginer M, Weller M, Ziegler U, et al (2014). Integrin inhibition promotes atypical anoikis in glioma cells. Cell Death Disease, 5, 1012. crossref(new window)

93.
Singh SK, Hawkins C, Clarke ID, et al (2004). Identification of human brain tumour initiating cells. Nature, 432, 396-401. crossref(new window)

94.
Sottoriva A, Spiteri I, Piccirillo SG, et al (2013). Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A, 110, 4009-14. crossref(new window)

95.
Stupp R, Hegi ME, Gorlia T, et al (2014). Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol, 15, 1100-8. crossref(new window)

96.
Sun G, Shi L, Li M, et al (2014a). Lefty inhibits glioma growth by suppressing nodal-activated smad and ERK1/2 pathways. J Neurol Sci, 347, 137-42. crossref(new window)

97.
Sun J, Liu S-z, Lin Y, et al (2014b). TGF-${\beta}$ promotes glioma cell growth via activating nodal expression through smad and ERK1/2 pathways. Biochem Biophys Res Communicat, 443, 1066-72. crossref(new window)

98.
Ten Dijke P, Arthur HM (2007). Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol, 8, 857-69. crossref(new window)

99.
The Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061-8. crossref(new window)