JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BIAN N-Heterocyclic Gold Carbene Complexes induced cytotoxicity in human cancer cells via upregulating oxidative stress
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BIAN N-Heterocyclic Gold Carbene Complexes induced cytotoxicity in human cancer cells via upregulating oxidative stress
Farooq, Muhammad; Taha, Nael Abu; Butorac, Rachel R; Evans, Daniel A; Elzatahry, Ahmed A; Wadaan, Mohammad AM; Cowley, Alan H;
  PDF(new window)
 Abstract
Background: Nanoparticles of gold and silver are offering revolutionary changes in the field of cancer therapy. N-heterocyclic carbene (NHC) metal complexes possess diverse biological activities and are being investigated as potential chemotherapeutic agents. The purpose of this study was to examine the cytotoxicity and possible mechanisms of action of two types of newly synthesized nanofiber composites containing BIAN N-heterocyclic gold carbene complexes in two types of human cancer cells, namely breast cancer (MCF7) and liver cancer (HepG2) cells and also in normal human embryonic kidney cells (HEK 293). Materials and Methods: Cytotoxicity was assessed by MTT cell viability assay and oxidative stress by checking the total glutathione level. Results: Both compounds affected the cell survival of the tested cell lines at very low concentrations (IC50 values in the micro molar range) as compared to a well-known anti-cancer drug, 5 fluorouracil. A 60-80% depletion in total glutathione level was detected in treated cells. Conclusions: Reduction in total glutathione level is one of the biochemical pathways for the induction of oxidative stress which in turn could be a possible mechanism of action by which these compounds induce cytotoxicity in cancer cell lines. The in vitro toxicity towards cancer cells found here means that these molecules could be potential anticancer candidates.
 Keywords
BIAN N-heterocyclic carbene complexes;nanofiber composite;cytotoxicity;oxidative stress;
 Language
English
 Cited by
 References
1.
Alfaro JM, Prades A, del Carmen Ramos M, et al (2010). Biomedical properties of a series of ruthenium-Nheterocyclic carbene complexes based on oxidant activity in vitro and assessment in vivo of biosafety in zebrafish embryos. Zebrafish, 7, 13-21. crossref(new window)

2.
Baker MV, Barnard PJ, Berners-Price SJ, et al (2006). Cationic, linear Au(i) N-heterocyclic carbene complexes: synthesis, structure and anti-mitochondrial activity. Dalton Transactions, 3708-15.

3.
Berners-Price SJ (2011). Activating platinum anticancer complexes with visible light. Angew Chem Int Ed Engl, 50, 804-5. crossref(new window)

4.
Bourissou D, Guerret O, Gabbai FP, et al (2000). Stable Carbenes. Chemical Reviews, 100, 39-92. crossref(new window)

5.
Butorac RR, Al-Deyab SS, Cowley AH (2011). Antimicrobial properties of some bis(iminoacenaphthene (BIAN)- supported N-heterocyclic carbene complexes of silver and gold. Molecules, 16, 2285-92. crossref(new window)

6.
Daduang J, Palasap A, Daduang S, et al (2015). Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac J Cancer Prev, 16, 169-74. crossref(new window)

7.
Droge T, Glorius F (2010). The measure of all rings-nheterocyclic carbenes. Angewandte Chemie-International Edition, 49, 6940-52. crossref(new window)

8.
Elzatahry AA, Al-Enizi AM, Elsayed EA, et al (2012). Nanofiber composites containing N-heterocyclic carbene complexes with antimicrobial activity. Int J Nanomedicine, 7, 2829-32.

9.
Farooq M, El-Faham A, Khattab SN, et al (2014). Biological screening of novel derivatives of valproic acid for anticancer and antiangiogenic properties. Asian Pac J Cancer Prev, 15, 7785-92. crossref(new window)

10.
Franco R, Cidlowski JA (2009). Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ, 16, 1303-14. crossref(new window)

11.
Gautier A, Cisnetti F (2012). Advances in metal-carbene complexes as potent anti-cancer agents. Metallomics, 4, 23-32. crossref(new window)

12.
Herrmann WA (2002). N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed Engl, 41, 1290-309. crossref(new window)

13.
Hickey JL, Ruhayel RA, Barnard PJ, et al (2008a). Mitochondriatargeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J Am Chem Soc, 130, 12570-1. crossref(new window)

14.
Hickey JL, Ruhayel RA, Barnard PJ, et al (2008b). Mitochondriatargeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J Am Chem Soc, 130, 12570-1. crossref(new window)

15.
Hindi KM, Panzner MJ, Tessier CA, et al (2009). The medicinal applications of imidazolium carbene-metal complexes. Chemical Reviews, 109, 3859-84. crossref(new window)

16.
Islamian JP, Hatamian M, Rashidi MR (2015). Nanoparticles promise new methods to boost oncology outcomes in breast cancer. Asian Pac J Cancer Prev, 16, 1683-6. crossref(new window)

17.
Liu W, Gust R (2013a). Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem Soc Rev, 42, 755-73. crossref(new window)

18.
Liu WK, Gust R (2013b). Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem Soc Rev, 42, 755-73. crossref(new window)

19.
Manke A, Wang LY, Rojanasakul Y (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. biomed research international.

20.
Mateo D, Morales P, Avalos A, et al (2014). Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicology Mechanisms and Methods, 24, 161-72. crossref(new window)

21.
Melaiye A, Simons RS, Milsted A, et al (2004). Formation of water-soluble pincer silver(I)-carbene complexes: a novel antimicrobial agent. J Med Chem, 47, 973-7. crossref(new window)

22.
Nardon C, Boscutti G, Fregona D (2014). Beyond platinums: gold complexes as anticancer agents. Anticancer Res, 34, 487-92.

23.
Oehninger L, Stefanopoulou M, Alborzinia H, et al (2013). Evaluation of arene ruthenium(II) N-heterocyclic carbene complexes as organometallics interacting with thiol and selenol containing biomolecules. Dalton Trans, 42, 1657-66. crossref(new window)

24.
Ozdemir I, Temelli N, Gunal S, et al (2010). Gold(I) complexes of N-heterocyclic carbene ligands containing benzimidazole: synthesis and antimicrobial activity. Molecules, 15, 2203-10. crossref(new window)

25.
Pervaiz S, Clement MV (2002). A permissive apoptotic environment: function of a decrease in intracellular superoxide anion and cytosolic acidification. Biochem Biophys Res Commun, 290, 1145-50. crossref(new window)

26.
Rubbiani R, Can S, Kitanovic I, et al (2011). Comparative in vitro evaluation of n-heterocyclic carbene Gold(I) complexes of the benzimidazolylidene type. J Med Chem, 54, 8646-57. crossref(new window)

27.
Selim ME, Hendi AA (2012). Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev, 13, 1617-20. crossref(new window)

28.
Tedesco S, Doyle H, Blasco J, et al (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 100, 178-86. crossref(new window)

29.
Teyssot ML, Jarrousse AS, Manin M, et al (2009). Metal-NHC complexes: a survey of anti-cancer properties. Dalton Transactions, 6894-902.

30.
Vasudevan KV, Butorac RR, Abernethy CD, et al (2010). Synthesis and coordination compounds of a bis(imino) acenaphthene (BIAN)-supported N-heterocyclic carbene. Dalton Transactions, 39, 7401-8. crossref(new window)

31.
Weskamp T, Kohl FJ, Hieringer W, et al (1999). Highly active ruthenium catalysts for olefin metathesis: the synergy of n-heterocyclic carbenes and coordinatively labile ligands. Angew Chem Int Ed Engl, 38, 2416-9. crossref(new window)