Advanced SearchSearch Tips
Association between p16 Promoter Methylation and Thyroid Cancer Risk: A Meta-analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Association between p16 Promoter Methylation and Thyroid Cancer Risk: A Meta-analysis
Wu, Wei; Yang, Sheng-Fu; Liu, Fei-Fei; Zhang, Ji-Hong;
  PDF(new window)
Background: The aim of the meta-analysis was to derive a more precise assessment of the association between p16 promoter methylation and thyroid cancer risk. Materials and Methods: The PubMed, Web of Science databases and Chinese CNKI were searched for relevant articles. Ultimately, seventeen case-control studies were included with a total of 804 thyroid cancer cases and 487 controls analysis by R Software (R version 3.1.2) including meta. Crude odds ratios with 95% confidence intervals were calculated using the random-effects model which were used to assess the strength of relationship between p16 methylation and lung carcinogenesis. Funnel plots were carried out to evaluate publication bias. Results: The meta-analysis results showed that the frequency of p16 promoter methylation in cancer tissue/blood was significantly higher than that normal tissue/blood (OR
Thyroid cancer;p16 promoter methylation;Meta-analysis;
 Cited by
STAT3 methylation in white blood cells as a novel sensitive biomarker for the toxic effect of low-dose benzene exposure, Toxicology Research, 2016, 5, 3, 800  crossref(new windwow)
Baylin SB (2005). DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol, 2, -11.

Boltze C, Zack S, Quednow C, et al (2003). Hypermethylation of the CDKN2/p16INK4A promotor in thyroid carcinogenesis. Pathol Res Pract, 199, 399-404. crossref(new window)

Brait M, Loyo M, Rosenbaum E, et al (2012). Correlation between BRAF mutation and promoter methylation of TIMP3, RARbeta2 and RASSF1A in thyroid cancer. Epigenetics, 7, 710-9. crossref(new window)

Budak A, Gulhan I, Aldemir OS, et al (2013). Lack of influence of pregnancy on the prognosis of survivors of thyroid cancer. Asian Pac J Cancer Prev, 14, 6941-3. crossref(new window)

Dai YL, Cai DH, Chen H, et al (2012). [The relevance between the promoter hypermethylation of tshr and p16 gene and clinicopathological parameters in human papillary thyroid carcinoma]. J Capital Medical University, 33, 361-5

Dai YL, Zhang F, Ye J, et al (2010). [P16 promoter hypermethylation in human papillary thyroid carcinoma]. Guangdong Medical Journal, 31, 1804-7.

DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88. crossref(new window)

Elisei R, Shiohara M, Koeffler HP, et al (1998). Genetic and epigenetic alterations of the cyclin-dependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines and primary thyroid carcinomas. Cancer, 83, 2185-93. crossref(new window)

Esteller M (2008). Epigenetics in cancer. N Engl J Med, 358, 1148-59. crossref(new window)

Goyal N, Setabutr D, Abdulghani J, et al (2013). Molecular and genetic markers of follicular-cell thyroid cancer: etiology and diagnostic and therapeutic opportunities. Adv Exp Med Biol, 779, 309-26. crossref(new window)

Hesson LB, Cooper WN, Latif F (2007). The role of RASSF1A methylation in cancer. Dis Markers, 23, 73-87. crossref(new window)

Higgins JP, Thompson SG, Deeks JJ, et al (2003). Measuring inconsistency in meta-analyses. BMJ, 327, 557-60. crossref(new window)

Hoque MO, Rosenbaum E, Westra WH, et al (2005). Quantitative assessment of promoter methylation profiles in thyroid neoplasms. J Clin Endocrinol Metab, 90, 4011-8. crossref(new window)

Huang P, Li DX, Zhang Y (2006). [Methylation of p16 gene and expression of p16 protein in human thyroid neoplasms]. J Practical Oncology, 21, 49-52

Lam AK, Lo CY, Leung P, et al (2007). Clinicopathological roles of alterations of tumor suppressor gene p16 in papillary thyroid carcinoma. Ann Surg Oncol, 14, 1772-9. crossref(new window)

Li JJ, He Y (2008). [Expression and Alterations of p16 Gene in Human Primary Thyroid Neoplasm]. Progress in Modern Biomedicine, 8, 1253-5.

Li XF, Jin YL, He ZL, et al (2013). [Detecting the abnormal methylation of plasma p16 promoter in patients with thyroid carcinoma by nested-methylation-specific polymerase chain reaction]. Chinese Journal of Prevention and Control of Chronic Diseases, 21, 34-6.

M. Egger GDS, M. Schneider, and C. Minder (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ Open.

Mantel N, Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 22, 719-48.

Mazzaferri EL (2012). Managing thyroid microcarcinomas. Yonsei Med J, 53, 1-14. crossref(new window)

Mohammadi-asl J, Larijani B, Khorgami Z, et al (2011). Qualitative and quantitative promoter hypermethylation patterns of the P16, TSHR, RASSF1A and RARbeta2 genes in papillary thyroid carcinoma. Med Oncol, 28, 1123-8. crossref(new window)

Nasr MR, Mukhopadhyay S, Zhang S, et al (2006). Immunohistochemical markers in diagnosis of papillary thyroid carcinoma: Utility of HBME1 combined with CK19 immunostaining. Mod Pathol, 19, 1631-7. crossref(new window)

Ojima H, Saito K, Yamauchi H, et al (2006). P16 protein abnormality in Epstein-Barr virus-associated gastric carcinomas. Anticancer Res, 26, 933-7.

Peng ZL, Cao RX, Wen GB, et al (2006). [The methylation of p16 gene in papillary thyroid carcinoma]. J Modern oncology, 14, 1501-3

Rayess H, Wang MB, Srivatsan ES (2012). Cellular senescence and tumor suppressor gene p16. Int J Cancer, 130, 1715-25. crossref(new window)

Schagdarsurengin U, Gimm O, Dralle H, et al (2006). CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma. Thyroid, 16, 633-42. crossref(new window)

Schagdarsurengin U, Gimm O, Hoang-Vu C, et al (2002). Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer Res, 62, 3698-701.

Sherman SI (2003). Thyroid carcinoma. Lancet, 361, 501-11. crossref(new window)

Wang P, Pei R, Lu Z, et al (2013). Methylation of p16 CpG islands correlated with metastasis and aggressiveness in papillary thyroid carcinoma. J Chin Med Assoc, 76, 135-9. crossref(new window)

Wartofsky L (2010). Increasing world incidence of thyroid cancer: increased detection or higher radiation exposure? Hormones (Athens), 9, 103-8. crossref(new window)

Wiseman SM, Melck A, Masoudi H, et al (2008). Molecular phenotyping of thyroid tumors identifies a marker panel for differentiated thyroid cancer diagnosis. Ann Surg Oncol, 15, 2811-26. crossref(new window)

Xing M (2013). Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer, 13, 184-99. crossref(new window)

Yang D, Zhang H, Hu X, et al (2012). Abnormality of pl6/ p38MAPK/p53/Wipl pathway in papillary thyroid cancer. Gland Surg, 1, 33-8.

Yen TW, Shapiro SE, Gagel RF, et al (2003). Medullary thyroid carcinoma: results of a standardized surgical approach in a contemporary series of 80 consecutive patients. Surgery, 134, 890-9. crossref(new window)