JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AXIN2 Polymorphisms, the β-Catenin Destruction Complex Expression Profile and Breast Cancer Susceptibility
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AXIN2 Polymorphisms, the β-Catenin Destruction Complex Expression Profile and Breast Cancer Susceptibility
Aristizabal-Pachon, Andres Felipe; Carvalho, Thais Inacio; Carrara, Helio Humberto; Andrade, Jurandyr; Takahashi, Catarina Satie;
  PDF(new window)
 Abstract
Background: The Wnt/-catenin signaling pathway is an important regulator of cellular functions such as proliferation, survival and cell adhesion. Wnt/-catenin signaling is associated with tumor initiation and progression; -catenin mutations explain only 30% of aberrant signaling found in breast cancer, indicating that other components and/or regulation of the Wnt/-catenin pathway may be involved. Objective: We evaluated AXIN2 rs2240308 and rs151279728 polymorphisms, and expression profiles of -catenin destruction complex genes in breast cancer patients. Materials and Methods: We collected peripheral blood samples from 102 breast cancer and 102 healthy subjects. The identification of the genetic variation was performed using PCR-RFLPs and DNA sequencing. RT-qPCR was used to determine expression profiles. Results: We found significant association of AXIN2 rs151279728 and rs2240308 polymorphisms with breast cancer risk. Significant increase was observed in AXIN2 level expression in breast cancer patients. Further analyses showed APC, -catenin, CK1, GSK3 and PP2A gene expression to be associated to clinic-pathological characteristics. Conclusions: The present study demonstrated, for the first time, that AXIN2 genetic defects and disturbance of -catenin destruction complex expression may be found in breast cancer patients, providing additional support for roles of Wnt/-catenin pathway dysfunction in breast cancer tumorigenesis. However, the functional consequences of the genetic alterations remain to be determined.
 Keywords
AXIN2;beta-catenin destruction complex;breast cancer;SNP;RFLP-PCR;gene expression;RT-qPCR;
 Language
English
 Cited by
1.
Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer, Breast Cancer Research and Treatment, 2016, 156, 2, 211  crossref(new windwow)
2.
High-order gene interactions between the genetic polymorphisms in Wnt and AhR pathway in modulating lung cancer susceptibility, Personalized Medicine, 2017, 14, 6, 487  crossref(new windwow)
3.
Molecular regulation and pharmacological targeting of the β-catenin destruction complex, British Journal of Pharmacology, 2017, 174, 24, 4575  crossref(new windwow)
4.
gene and lung cancer risk in North Indian population: A multiple interaction analysis, Tumor Biology, 2017, 39, 4, 101042831769553  crossref(new windwow)
 References
1.
Alanazi MS, Parine NR, Shaik JP, et al (2013). Association of single nucleotide polymorphisms in Wnt signaling pathway genes with breast cancer in Saudi patients. PLoS One, 8, 59555. crossref(new window)

2.
Brito C, Portela MC, Vasconcellos MT (2009). Survival of breast cancer women in the state of Rio de Janeiro, Southeastern Brazil. Rev Saude Publica, 43, 481-9. crossref(new window)

3.
Castiglia D, Bernardini S, Alvino E, et al (2008). Concomitant activation of Wnt pathway and loss of mismatch repair function in human melanoma. Genes Chromosomes Cancer, 47, 614-24. crossref(new window)

4.
Clevers H, Nusse R (2012). Wnt/beta-catenin signaling and disease. Cell, 149, 1192-205. crossref(new window)

5.
Chapman A, Durand J, Ouadi L, et al (2011). Identification of genetic alterations of AXIN2 gene in adrenocortical tumors. J Clin Endocrinol Metab, 96, 1477-81. crossref(new window)

6.
Dong X, Seelan RS, Qian C, et al (2001). Genomic structure, chromosome mapping and expression analysis of the human AXIN2 gene. Cytogenet Cell Genet, 93, 26-8. crossref(new window)

7.
Gabrovska PN, Smith RA, Tiang T, et al (2012). Development of an eight gene expression profile implicating human breast tumours of all grade. Mol Biol Rep, 39, 3879-92. crossref(new window)

8.
Gunes EG, Pinarbasi E, Pinarbasi H, et al (2009). Strong association between lung cancer and the AXIN2 polymorphism. Mol Med Report, 2, 1029-35.

9.
Han Y, Zhou L, Ma L, et al (2014). The axis inhibition protein 2 polymorphisms and non-syndromic orofacial clefts susceptibility in a Chinese Han population. J Oral Pathol Med, 43, 554-60. crossref(new window)

10.
Herbst A, Jurinovic V, Krebs S, et al (2014). Comprehensive analysis of beta-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling. BMC Genomics, 15, 74. crossref(new window)

11.
Howe LR, Brown AM (2004). Wnt signaling and breast cancer. Cancer Biol Ther, 3, 36-41. crossref(new window)

12.
Jho EH, Zhang T, Domon C, et al (2002). Wnt/beta-catenin/ Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol, 22, 1172-83. crossref(new window)

13.
Jonsson M, Borg A, Nilbert M, et al (2000). Involvement of adenomatous polyposis coli (APC)/beta-catenin signalling in human breast cancer. Eur J Cancer, 36, 242-8. crossref(new window)

14.
Kanzaki H, Ouchida M, Hanafusa H, et al (2006). Single nucleotide polymorphism of the AXIN2 gene is preferentially associated with human lung cancer risk in a Japanese population. Int J Mol Med, 18, 279-84.

15.
Kao SH, Wang WL, Chen CY, et al (2014). GSK3beta controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene, 33, 3172-82. crossref(new window)

16.
Khalil S, Tan GA, Giri DD, et al (2012). Activation status of Wnt/ ss-catenin signaling in normal and neoplastic breast tissues: relationship to HER2/neu expression in human and mouse. PLoS One, 7, 33421. crossref(new window)

17.
Klarmann GJ, Decker A, Farrar WL (2008). Epigenetic gene silencing in the Wnt pathway in breast cancer. Epigenetics, 3, 59-63. crossref(new window)

18.
Lamb R, Ablett MP, Spence K, et al (2013). Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS One, 8, 67811. crossref(new window)

19.
Lammi L, Arte S, Somer M, et al (2004). Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet, 74, 1043-50. crossref(new window)

20.
Lehmann BD, Bauer JA, Chen X, et al (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest, 121, 2750-67. crossref(new window)

21.
Letra A, Menezes R, Granjeiro JM, et al (2009). AXIN2 and CDH1 polymorphisms, tooth agenesis, and oral clefts. Birth Defects Res A Clin Mol Teratol, 85, 169-73. crossref(new window)

22.
Li J, Sheng C, Li W, et al (2014). Protein phosphatase-2A is downregulated in patients within clear cell renal cell carcinoma. Int J Clin Exp Pathol, 7, 1147-53.

23.
Lustig B, Jerchow B, Sachs M, et al (2002). Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol, 22, 1184-93. crossref(new window)

24.
MacDonald BT, Tamai K, He X (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17, 9-26. crossref(new window)

25.
Moon RT, Kohn AD, De Ferrari GV, et al (2004). WNT and betacatenin signalling: diseases and therapies. Nat Rev Genet, 5, 691-701. crossref(new window)

26.
Mosimann C, Hausmann G, Basler K (2009). Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol, 10, 276-86. crossref(new window)

27.
Mostowska A, Biedziak B, Jagodzinski PP (2006). Axis inhibition protein 2 (AXIN2) polymorphisms may be a risk factor for selective tooth agenesis. J Hum Genet, 51, 262-6. crossref(new window)

28.
Mostowska A, Pawlik P, Sajdak S, et al (2014). An analysis of polymorphisms within the Wnt signaling pathway in relation to ovarian cancer risk in a Polish population. Mol Diagn Ther, 18, 85-91. crossref(new window)

29.
Nelson S, Nathke IS (2013). Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance. J Cell Sci, 126, 873-7. crossref(new window)

30.
Pedace L, Castiglia D, De Simone P, et al (2011). AXIN2 germline mutations are rare in familial melanoma. Genes Chromosomes Cancer, 50, 370-3. crossref(new window)

31.
Pinarbasi E, Gunes EG, Pinarbasi H, et al (2011). AXIN2 polymorphism and its association with prostate cancer in a Turkish population. Med Oncol, 28, 1373-8. crossref(new window)

32.
Polakis P (2007). The many ways of Wnt in cancer. Curr Opin Genet Dev, 17, 45-51. crossref(new window)

33.
Rennoll SA, Konsavage WM, Jr., Yochum GS (2014). Nuclear AXIN2 represses MYC gene expression. Biochem Biophys Res Commun, 443, 217-22. crossref(new window)

34.
Rubinfeld B, Robbins P, El-Gamil M, et al (1997). Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science, 275, 1790-2. crossref(new window)

35.
Sablina AA, Chen W, Arroyo JD, et al (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell, 129, 969-82. crossref(new window)

36.
Salahshor S, Woodgett JR (2005). The links between axin and carcinogenesis. J Clin Pathol, 58, 225-36. crossref(new window)

37.
Santos RA, Teixeira AC, Mayorano MB, et al (2010). Basal levels of DNA damage detected by micronuclei and comet assays in untreated breast cancer patients and healthy women. Clin Exp Med, 10, 87-92. crossref(new window)

38.
Schmittgen TD, Livak KJ (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 3, 1101-8. crossref(new window)

39.
Srivastava M, Khurana P, Sugadev R (2012). Lung cancer signature biomarkers: tissue specific semantic similarity based clustering of digital differential display (DDD) data. BMC Res Notes, 5, 617. crossref(new window)

40.
Stamos JL, Weis WI (2013). The beta-catenin destruction complex. Cold Spring Harb Perspect Biol, 5, 7898.

41.
Suraweera N, Robinson J, Volikos E, et al (2006). Mutations within Wnt pathway genes in sporadic colorectal cancers and cell lines. Int J Cancer, 119, 1837-42. crossref(new window)

42.
Teixeira AC, Dos Santos RA, Poersch A, et al (2009). DNA repair in Etoposide-induced DNA damage in lymphocytes of breast cancer patients and healthy women. Int J Clin Exp Med, 2, 280-8.

43.
Tudoran O, Virtic O, Balacescu L, et al (2014). Differential peripheral blood gene expression profile based on her2 expression on primary tumors of breast cancer patients. PLoS One, 9, 102764. crossref(new window)

44.
Wang X, Goode EL, Fredericksen ZS, et al (2008). Association of genetic variation in genes implicated in the beta-catenin destruction complex with risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 17, 2101-8. crossref(new window)

45.
Westermarck J, Hahn WC (2008). Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med, 14, 152-60. crossref(new window)

46.
Willert K, Shibamoto S, Nusse R (1999). Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev, 13, 1768-73. crossref(new window)

47.
Xie HL, Chen ZC, He CM, et al (2003). [Cloning and expression analysis of lung carcinoma related gene HLCDG1]. Ai Zheng, 22, 1014-7.

48.
Yook JI, Li XY, Ota I, et al (2006). A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol, 8, 1398-406. crossref(new window)