JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Correlation between Patterns of Mdm2 SNIP 309 and Histopathological Severity of Helicobacter pylori Associated Gastritis in Thailand
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Correlation between Patterns of Mdm2 SNIP 309 and Histopathological Severity of Helicobacter pylori Associated Gastritis in Thailand
Tongtawee, Taweesak; Dechsukhum, Chavaboon; Talabnin, Krajang; Leeanansaksiri, Wilairat; Kaewpitoon, Soraya; Kaewpitoon, Natthawut; Loyd, Ryan A; Matrakool, Likit; Panpimanmas, Sukij;
  PDF(new window)
 Abstract
Background: The commonly held view of the tumor suppressor p53 is as a regulator of cell proliferation, apoptosis and many other biological processes as well as external and internal stress responses. Mdm2 SNIP309 is a negative regulator of p 53. Therefore, this study aimed to determine the correlation between the patterns of Mdm2 SNIP 309 and the inflammation grading of Helicobacter pylori associated gastritis in a Thai population. Materials and Methods: A cross-sectional study was carried out from November 2014 through June 2015. Biopsy specimens were obtained from infected patients and infection was proved by positive histology. The gastric mucosa specimens were sent to the Molecular Genetic Unit, Institute of Medicine, Suranaree University of Technology where they were tested by molecular methods to detect the patterns of Mdm2 SNIP 309 using the real-time PCR hybridization probe method. The results were analyzed and compared with the Updated Sydney classification. Results: A total of 100 infected patients were interviewed and gastric mucosa specimens were collected. In this study the percentage of Mdm2 SNIP 309 T/T homozygous and Mdm2 SNIP309 G/T heterozygous was 78% and 19 % respectively whereas Mdm2 SNIP309 G/G homozygous was 3%. Mdm2 SNIP 309 T/T homozygous and Mdm2 SNIP309 G/T heterozygous correlated with mild to moderate inflammation (P<0.01) whereas Mdm2 SNIP309 G/G homozygous correlated with severe inflammation (P<0.01). Conclusions: Our study found the frequency of Mdm2 SNP309 G/G in our Thai population to be very low, and suggests that this can explain to some extent the low incidence of severe inflammation and gastric cancer changes in the Thai population. Mild to moderate inflammation are the most common pathologic gradings due to the unique genetic polymorphism of Mdm2 SNIP 309 in the Thai population.
 Keywords
Mdm2 SNIP 309;Inflammation grading;Helicobacter pylori;Gastric cancer;
 Language
English
 Cited by
1.
TLR1 Polymorphism Associations with Gastric Mucosa Morphologic Patterns on Magnifying NBI Endoscopy: a Prospective Cross-Sectional Study,;;;;;;;;;

Asian Pacific Journal of Cancer Prevention, 2016. vol.17. 7, pp.3391-3394 crossref(new window)
1.
Toll-Like Receptors are Associated with Helicobacter pylori Infection and Gastric Mucosa Pathology, Jundishapur Journal of Microbiology, 2017, In Press, In Press  crossref(new windwow)
 References
1.
Asaka M, Kato M, Kudo M, et al (1995). Relationship between Helicobacter pylori infection, atrophic gastritis and gastric carcinoma in a Japanese population. Eur J Gastroenterol Hepatol, 1, 7-10.

2.
Bond GL, Hu W, Levine AJ, et al (2005). Mdm2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets, 5, 3-8. crossref(new window)

3.
Cai L, Yu SZ, Zhang ZF, et al (2000). Helicobacter pylori infection and risk of gastric cancer in Changle County, Fujian Province, China. World J Gastroenterol, 6, 374-6. crossref(new window)

4.
Dixon MF, Genta RM, Harley JH, et al (1996). Classification and grading of gastritis: The updated Sydney system. Am J Surgical Pathol, 20, 1161-81.

5.
Gurova KV, Hill JE, Guo C, et al (2005). Small molecules that reactivate p53 in renal cell Haupt, carcinoma reveals a nfkappab- dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci U. S. A, 102, 17448-53. crossref(new window)

6.
Haupt Y, Maya R, Kazaz A, et al (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387, 296-9. crossref(new window)

7.
Honda R, Tanaka H, Yasuda H, (1997). Oncoprotein MDM2 is an ubiquitin ligase E3 for tumor suppressor p53. FEBS Letters, 420, 25-7. crossref(new window)

8.
Holcombe C (1992). Helicobacter pylori: the African enigma. Gut, 33, 429-31. crossref(new window)

9.
Kate V and Ananthakrishnan N (2000). Helicobacter pylori and gastric carcinoma: evidence for the link. Natl Med J India, 13, 329.

10.
Kate V, Ananthakrishnan N, Badrinath S, et al (1998). Prevalence of Helicobacter pylori infection in disorders of the upper gastrointestinal tract in south India. Natl Med J India, 11, 5-8.

11.
Khanna AK, Seth P, Nath G, et al (2002). Correlation of Helicobacter pylori and gastric carcinoma. J Postgrad Med, 48, 27-8.

12.
Komarova EA, Krivokrysenko V, Wang K, et al (2005). P53 is a suppressor of inflammatory response in mice. Faseb J Official Publicat Federation Of American Societies For Experimental Biol, 19, 1030-2. crossref(new window)

13.
Kubbutat MH and Jones SN (1997). Regulation of p53 stability by Mdm2. Nature, 387, 299-303. crossref(new window)

14.
Lowe J, Shatz M, Resnick MA, et al (2013). Modulation of immune responses by the tumor suppressor p53. Bio Discovery, 8, 2.

15.
Momand J and Zambetti GP (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237-45. crossref(new window)

16.
Moradi MT, Salehi Z, Aminian K, et al (2014). Effects of p53 codon 72 and MDM2 SNP309 polymorphisms on gastric cancer risk among the Iranian population. Asian Pac J Cancer Prevc, 15, 7413-7. crossref(new window)

17.
O'Prey J, Crighton D, Martin AG, et al (2010). P53-mediated induction of noxa and p53aip1 requires nfkappab. Cell Cycle, 9, 947-52. crossref(new window)

18.
Picksley SM, Lane DP (1993). The p53-mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53?. Bioessays, 15, 689-90. crossref(new window)

19.
Sivaprakash R, Rao UA, Thyagarajan SP, et al (1996). Investigation for the prevalence of hselicobacter pylori infection in patients with gastric carcinoma in Madras, India. Jpn J Med Sci Biol, 49, 49-56. crossref(new window)

20.
Taweesak T, Soraya K, Natthawut K, et al (2015). Correlation between gastric mucosal morphologic patterns and histopathological severity of helicobacter pylori associated gastritis using conventional narrow band imaging gastroscopy. Bio Med Res Int, 7, 42-8.

21.
Tergaonkar V, Pando M, Vafa O, et al (2002). P53 stabilization is decreased upon nf kappa b activation : A role for nfkappab in acquisition of resistance to chemotherapy. Cancer Cell, 1, 493-503. crossref(new window)

22.
Wang X, Yang J, Ho B, et al (2009). Interaction of helicobacter pylori with genetic variants in the MDM2 promoter is associated with gastric cancer susceptibility in Chinese patients. Helicobacter, 14, 114-9.