Advanced SearchSearch Tips
MicroRNA-124 rs531564 Polymorphism and Cancer Risk: A Meta-analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MicroRNA-124 rs531564 Polymorphism and Cancer Risk: A Meta-analysis
Li, Wen-Jing; Wang, Yong; Gong, Yu; Tu, Chao; Feng, Tong-Bao; Qi, Chun-Jian;
  PDF(new window)
Several studies reported there was a polymorphism (rs531564 C > G) in miR-124 gene. To investigate the MiR-124 rs531564 polymorphism and cancer risk. We conducted a literature search of the Medline, Embase and Wangfang Medicine databases to identify all relevant studies for this meta-analysis. We determined that the miR-124 rs531564 polymorphism was significantly associated with decreased risks of cancers in the allelic model (G vs C, OR
miR-124;rs531564;polymorphism;cancer risk;meta-analysis;
 Cited by
A meta-analysis: Is there any association between MiR-608 rs4919510 polymorphism and breast cancer risks?, PLOS ONE, 2017, 12, 8, e0183012  crossref(new windwow)
Polymorphisms in MIR122, MIR196A2, and MIR124A Genes are Associated with Clinical Phenotypes in Inflammatory Bowel Diseases, Molecular Diagnosis & Therapy, 2017, 21, 1, 107  crossref(new windwow)
Validation of microRNA pathway polymorphisms in esophageal adenocarcinoma survival, Cancer Medicine, 2017, 6, 2, 361  crossref(new windwow)
Ahn DH, Rah H, Choi YK, et al (2013). Association of the miR- 146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. Mol Carcinog, 52, 39-51.

Ambros V (2004). The functions of animal microRNAs. Nature, 431, 350-5. crossref(new window)

Bartel DP (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-33. crossref(new window)

Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nat Rev Cancer, 6, 857-66. crossref(new window)

DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88. crossref(new window)

Dikeakos P, Theodoropoulos G, Rizos S, et al (2014). Association of the miR-146aC>G, miR-149T>C, and miR- 196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population. Mol Biol Rep, 41, 1075-80. crossref(new window)

Ebert MS, Sharp PA (2012). Roles for microRNAs in conferring robustness to biological processes. Cell, 149, 515-24. crossref(new window)

Egger M, Davey Smith G, Schneider M, et al (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629-34. crossref(new window)

Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 6, 259-69. crossref(new window)

Fabian MR, Sonenberg N (2012). The mechanics of miRNAmediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol, 19, 586-93. crossref(new window)

Furuta M, Kozaki KI, Tanaka S, et al (2010). miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis, 31, 766-76. crossref(new window)

Gao LB, Bai P, Pan XM, et al (2011). The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Res Treat, 125, 571-4. crossref(new window)

Hatley ME, Patrick DM, Garcia MR, et al (2010). Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell, 18, 282-93. crossref(new window)

He L, Hannon GJ (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5, 522-31. crossref(new window)

Hu CB, Li QL, Hu JF, et al (2014). miR-124 inhibits growth and invasion of gastric cancer by targeting ROCK1. Asian Pac J Cancer Prev, 15, 6543-6. crossref(new window)

Jansson MD, Lund AH (2012). MicroRNA and cancer. Mol Oncol, 6, 590-610. crossref(new window)

Ji T, Zheng ZG, Wang FM, et al (2014). Differential microRNA expression by Solexa sequencing in the sera of ovarian cancer patients. Asian Pac J Cancer Prev, 15, 1739-43. crossref(new window)

Jinushi T, Shibayama Y, Kinoshita I, et al (2014). Low expression levels of microRNA-124-5p correlated with poor prognosis in colorectal cancer via targeting of SMC4. Cancer Med, 3, 1544-52. crossref(new window)

Kong YW, Ferland-McCollough D, Jackson TJ, et al (2012). microRNAs in cancer management. Lancet Oncol, 13, 249-58. crossref(new window)

Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11, 597-610. crossref(new window)

Kutanzi KR, Yurchenko OV, Beland FA, et al (2011). MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics, 2, 171-85. crossref(new window)

Li L, Luo J, Wang B, et al (2013). Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer, 12, 163. crossref(new window)

Li W, Zang W, Liu P, et al (2014). MicroRNA-124 inhibits cellular proliferation and invasion by targeting Ets-1 in breast cancer. Tumour Biol, 35, 10897-904. crossref(new window)

Lian H, Wang L, Zhang J (2012). Increased risk of breast cancer associated with CC genotype of Has-miR-146a Rs2910164 polymorphism in Europeans. PLoS ONE, 7, 31615. crossref(new window)

Link A, Kupcinskas J, Wex T, et al (2012). Macro-role of microRNA in gastric cancer. Dig Dis, 30, 255-67. crossref(new window)

Mantel N, Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 22, 719-48.

Pasquinelli AE (2012). MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet, 13, 271-82. crossref(new window)

Peng XH, Huang HR, Lu J, et al (2014). MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Mol Cancer, 13, 186. crossref(new window)

Pritchard CC, Cheng HH, Tewari M (2012). MicroRNA profiling: approaches and considerations. Nat Rev Genet, 13, 358-69.

Ruan K, Fang X, Ouyang G (2009). MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett, 285, 116-26. crossref(new window)

Suarez Y, Sessa WC (2009). MicroRNAs as novel regulators of angiogenesis. Circ Res, 104, 442-54. crossref(new window)

Tong N, Xu B, Shi D, et al (2014). Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children. Mutat Res Fundam Mol Mech Mutagen, 759, 16-21. crossref(new window)

Wan HY, Li QQ, Zhang Y, et al (2014). MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells. Cancer Lett, 355, 148-58. crossref(new window)

Wang J, Bi J, Liu X, et al (2012). Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis of 19 casecontrol studies. Mol Biol Rep, 39, 4571-9. crossref(new window)

Woolf B (1955). On estimating the relation between blood group and disease. Ann Hum Genet, 19, 251-3. crossref(new window)

Wu H, Zhang J (2014). miR-124 rs531564 polymorphism influences genetic susceptibility to cervical cancer. Int J Clin Exp Med, 7, 5847-51.

Xiong X, Cheng J, Liu X, et al (2014). [Correlation analysis between miR-124 rs531564 polymorphisms and susceptibility to cervical cancer]. Nan Fang Yi Ke Da Xue Xue Bao, 34, 210-3.

Yin J, Wang X, Zheng L, et al (2013). Hsa-miR-34b/c rs4938723 T>C and hsa-miR-423 rs6505162 C>A polymorphisms are associated with the risk of esophageal cancer in a Chinese population. PLoS ONE, 8, 80570. crossref(new window)

Zhang J, Huang X, Xiao J, et al (2014a). Pri-miR-124 rs531564 and pri-miR-34b/c rs4938723 polymorphisms are associated with decreased risk of esophageal squamous cell carcinoma in Chinese populations. PLoS ONE, 9, 100055. crossref(new window)

Zhang T, Wang J, Zhai X, et al (2014b). MiR-124 retards bladder cancer growth by directly targeting CDK4. Acta Biochim Biophys Sin (Shanghai), 46, 1072-9. crossref(new window)