JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Potential Roles of Protease Inhibitors in Cancer Progression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Potential Roles of Protease Inhibitors in Cancer Progression
Yang, Peng; Li, Zhuo-Yu; Li, Han-Qing;
  PDF(new window)
 Abstract
Proteases are important molecules that are involved in many key physiological processes. Protease signaling pathways are strictly controlled, and disorders in protease activity can result in pathological changes such as cardiovascular and inflammatory diseases, cancer and neurological disorders. Many proteases have been associated with increasing tumor metastasis in various human cancers, suggesting important functional roles in the metastatic process because of their ability to degrade the extracellular matrix barrier. Proteases are also capable of cleaving non-extracellular matrix molecules. Inhibitors of proteases to some extent can reduce invasion and metastasis of cancer cells, and slow down cancer progression. In this review, we focus on the role of a few proteases and their inhibitors in tumors as a basis for cancer prognostication and therapy.
 Keywords
Protease;protease inhibitor;tumor metastasis;targeted cancer therapy;
 Language
English
 Cited by
 References
1.
Alitalo A, Detmar M (2012). Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene, 31, 4499-508. crossref(new window)

2.
Behm B, Babilas P, Landthaler M, et al (2012). Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol, 26, 812-20. crossref(new window)

3.
Campodonico PB, de Kier Joffe ED, Urtreger AJ, et al (2010). The neural cell adhesion molecule is involved in the metastatic capacity in a murine model of lung cancer. Mol Carcinog, 49, 386-97.

4.
Cao XL, Xu RJ, Zheng YY, et al (2011). Expression of type IV collagen, metalloproteinase-2, metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in laryngeal squamous cell carcinomas. Asian Pac J Cancer Prev, 12, 3245-9.

5.
Chernov AV, Strongin AY (2011). Epigenetic regulation of matrix metalloproteinases and their collagen substrates in cancer. Biomol Concepts, 2, 135-47.

6.
Coutinho MF, Prata MJ, Alves S (2012). A shortcut to the lysosome: the mannose-6-phosphate-independent pathway. Mol Genet Metab, 107, 257-66. crossref(new window)

7.
Deryugina EI, Quigley JP (2012). Cell surface remodeling by plasmin: a new function for an old enzyme. J Biomed Biotechnol, 2012, 564259.

8.
Elie BT, Gocheva V, Shree T, et al (2010). Identification and preclinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie, 92, 1618-24. crossref(new window)

9.
Fang JH, Zhou HC, Zeng C, et al (2011). MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology, 54, 1729-40. crossref(new window)

10.
Fonovic M, Turk B (2014a). Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta, 1840, 2560-70. crossref(new window)

11.
Fonovic M, Turk B (2014b). Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. Proteomics Clin Appl, 8, 416-26. crossref(new window)

12.
Fricker SP (2010). Cysteine proteases as targets for metal-based drugs. Metallomics, 2, 366-77. crossref(new window)

13.
Gaffney J, Solomonov I, Zehorai E, et al (2015). Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specificity in vivo. Matrix Biol.

14.
Gearing AJ, Beckett P, Christodoulou M, et al (1994). Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature, 370, 555-7. crossref(new window)

15.
Gialeli C, Theocharis AD, Karamanos NK (2011). Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J, 278, 16-27. crossref(new window)

16.
Gocheva V, Joyce JA (2007). Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle, 6, 60-4. crossref(new window)

17.
Gocheva V, Zeng W, Ke D, et al (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev, 20, 543-56. crossref(new window)

18.
Goulet B, Sansregret L, Leduy L, et al (2007). Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol Cancer Res, 5, 899-907. crossref(new window)

19.
Gupta SC, Kim JH, Prasad S, et al (2010). Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev, 29, 405-34. crossref(new window)

20.
Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-74. crossref(new window)

21.
Hart JR, Liao L, Yates JR, 3rd, et al (2011). Essential role of Stat3 in PI3K-induced oncogenic transformation. Proc Natl Acad Sci U S A, 108, 13247-52. crossref(new window)

22.
Hildenbrand R, Allgayer H, Marx A, et al (2010). Modulators of the urokinase-type plasminogen activation system for cancer. Expert Opin Investig Drugs, 19, 641-52. crossref(new window)

23.
Hildenbrand R, Schaaf A, Dorn-Beineke A, et al (2009). Tumor stroma is the predominant uPA-, uPAR-, PAI-1-expressing tissue in human breast cancer: prognostic impact. Histol Histopathol, 24, 869-77.

24.
Hsieh MJ, Chen KS, Chiou HL, et al (2010). Carbonic anhydrase XII promotes invasion and migration ability of MDAMB- 231 breast cancer cells through the p38 MAPK signaling pathway. Eur J Cell Biol, 89, 598-606. crossref(new window)

25.
Jankun J, Al-Senaidy A, Skrzypczak-Jankun E (2012). Can inactivators of plasminogen activator inhibitor alleviate the burden of obesity and diabetes? (Review). Int J Mol Med, 29, 3-11.

26.
Jedeszko C, Sloane BF (2004). Cysteine cathepsins in human cancer. Biol Chem, 385, 1017-27.

27.
Jensen JK, Malmendal A, Schiott B, et al (2006). Inhibition of plasminogen activator inhibitor-1 binding to endocytosis receptors of the low-density-lipoprotein receptor family by a peptide isolated from a phage display library. Biochem J, 399, 387-96. crossref(new window)

28.
Jones AL, Hulett MD, Altin JG, et al (2004). Plasminogen is tethered with high affinity to the cell surface by the plasma protein, histidine-rich glycoprotein. J Biol Chem, 279, 38267-76. crossref(new window)

29.
Joyce JA (2005). Therapeutic targeting of the tumor microenvironment. Cancer Cell, 7, 513-20. crossref(new window)

30.
Joyce JA, Baruch A, Chehade K, et al (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5, 443-53. crossref(new window)

31.
Kacsinta AD, Rubenstein CS, Sroka IC, et al (2014). Intracellular modifiers of integrin alpha 6p production in aggressive prostate and breast cancer cell lines. Biochem Biophys Res Commun, 454, 335-40. crossref(new window)

32.
Kitamura T, Taketo MM (2007). Keeping out the bad guys: gateway to cellular target therapy. Cancer Res, 67, 10099-102. crossref(new window)

33.
Laurent-Matha V, Huesgen PF, Masson O, et al (2012). Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. Faseb J, 26, 5172-81. crossref(new window)

34.
Li Z, Zhang L, Zhao Y, et al.(2013). Cell surface GRP78 facilitates colorectal cancer cell migration and invasion. IN J Biochem Cell Biol, 45, 987-94. crossref(new window)

35.
Lu P, Weaver VM, Werb Z (2012). The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 196, 395-406. crossref(new window)

36.
Mohamed MM, Sloane BF (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer, 6, 764-75. crossref(new window)

37.
Monsouvanh A, Proungvitaya T, Limpaiboon T, et al (2014). Serum cathepsin B to cystatin C ratio as a potential marker for the diagnosis of cholangiocarcinoma. Asian Pac J Cancer Prev, 15, 9511-5. crossref(new window)

38.
Murray IA, Krishnegowda G, DiNatale BC, et al (2010). Development of a selective modulator of aryl hydrocarbon (Ah) receptor activity that exhibits anti-inflammatory properties. Chem Res Toxicol, 23, 955-66. crossref(new window)

39.
Navab R, Mort JS, Brodt P (1997). Inhibition of carcinoma cell invasion and liver metastases formation by the cysteine proteinase inhibitor E-64. Clin Exp Metastasis, 15, 121-9. crossref(new window)

40.
Nissinen L, Kahari VM (2014). Matrix metalloproteinases in inflammation. Biochim Biophys Acta, 1840, 2571-80. crossref(new window)

41.
Oh CK, Ariue B, Alban RF, et al (2002). PAI-1 promotes extracellular matrix deposition in the airways of a murine asthma model. Biochem Biophys Res Commun, 294, 1155-60. crossref(new window)

42.
Quail DF, Joyce JA (2013). Microenvironmental regulation of tumor progression and metastasis. Nat Med, 19, 1423-37. crossref(new window)

43.
Rakashanda S, Qazi AK, Majeed R, et al (2013). Antiproliferative activity of Lavatera cashmeriana- protease inhibitors towards human cancer cells. Asian Pac J Cancer Prev, 14, 3975-8. crossref(new window)

44.
Revach OY, Geiger B (2014). The interplay between the proteolytic, invasive, and adhesive domains of invadopodia and their roles in cancer invasion. Cell Adh Migr, 8, 215-25. crossref(new window)

45.
Rothberg JM, Bailey KM, Wojtkowiak JW, et al (2013). Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia, 15, 1125-37. crossref(new window)

46.
Salpeter SJ, Pozniak Y, Merquiol E, et al (2015). A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression. Oncogene.

47.
Sanman LE, Bogyo M (2014). Activity-based profiling of proteases. Annu Rev Biochem, 83, 249-73. crossref(new window)

48.
Shay G, Lynch CC, Fingleton B (2015). Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol.

49.
Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012). Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol, 181, 1895-9. crossref(new window)

50.
Strojnik T, Kavalar R, Trinkaus M, et al (2005). Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev, 29, 448-55. crossref(new window)

51.
Turk V, Stoka V, Vasiljeva O, et al (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta, 1824, 68-88. crossref(new window)

52.
van Horssen R, Buccione R, Willemse M, et al (2013). Cancer cell metabolism regulates extracellular matrix degradation by invadopodia. Eur J Cell Biol, 92, 113-21. crossref(new window)

53.
Vazquez R, Astorgues-Xerri L, Bekradda M, et al (2015). Fsn0503h antibody-mediated blockade of cathepsin S as a potential therapeutic strategy for the treatment of solid tumors. Biochimie, 108, 101-7. crossref(new window)

54.
Wen J, Nikitakis NG, Chaisuparat R, et al (2011). Secretory leukocyte protease inhibitor (SLPI) expression and tumor invasion in oral squamous cell carcinoma. Am J Pathol, 178, 2866-78. crossref(new window)

55.
Wieczerzak E, Drabik P, Lankiewicz L, et al (2002). Azapeptides structurally based upon inhibitory sites of cystatins as potent and selective inhibitors of cysteine proteases. J Med Chem, 45, 4202-11. crossref(new window)

56.
Yadav L, Puri N, Rastogi V, et al (2014). Matrix metalloproteinases and cancer - roles in threat and therapy. Asian Pac J Cancer Prev, 15, 1085-91. crossref(new window)

57.
Yan C, Boyd DD (2007). Regulation of matrix metalloproteinase gene expression. J Cell Physiol, 211, 19-26. crossref(new window)

58.
Yang P, Li Z, Fu R, et al (2014). Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell Signal, 26, 1853-62. crossref(new window)

59.
Yepes M, Roussel BD, Ali C, et al (2009). Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci, 32, 48-55. crossref(new window)