JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress
Khanra, Kalyani; Chakraborty, Anindita; Bhattacharyya, Nandan;
  PDF(new window)
 Abstract
The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta () specific for ovarian cancer. has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards and UV when compared with HeLa cells alone. It has been shown that cell death in transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.
 Keywords
Mutation;DNA polymerase beta;base excision repair;apoptosis;caspase;
 Language
English
 Cited by
 References
1.
Beard WA, Wilson SH (2000). Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta. Mutat Res, 460, 231-44. crossref(new window)

2.
Beard WA, Wilson SH (2006). Structure and mechanism of DNA polymerase Beta. Chem Rev, 106, 361-82. crossref(new window)

3.
Bhattacharyya N, Banerjee S (1997). A variant of DNA polymerase beta acts as a dominant negative mutant. PNAS, 94, 10324-9. crossref(new window)

4.
Bhattacharyya N, Banerjee S (2000). A novel role of XRCC1 in the functions of a DNA polymerase beta variant. Biochemistry, 40, 9005-13.

5.
Bhattacharyya N, Banerjee T, Patel U, Banerjee S (2001). Impaired repair activity of a truncated DNA polymerase beta protein. Life Sciences, 69, 271-80. crossref(new window)

6.
Bhattacharyya N, Chen HC, Comhair S, Erzurum SC, Banerjee S (1999a).Variant forms of DNA polymerase beta in primary lung carcinomas. DNA Cell Biol, 18, 549-54. crossref(new window)

7.
Bhattacharyya N, Chen HC, Grundfest SB, Banerjee S (1999b). Alteration of hMSH2 and DNA polymerase b genes in breast carcinomas and fibroadenomas. BiocheBiophys Res Comm, 259, 429-35. crossref(new window)

8.
Chen HC, Bhattacharyya N, Wang L, Banerjee S (2002). Heterogeneity in expression and functional analysis of DNA polymerase b in human tumor cell lines. Gene Expression, 10, 115-23.

9.
Chen HC, Bhattacharyya N, Wang L, et al (2000). Defective DNA repair genes in a primary culture of human renal cell carcinoma. Cancer Res Clinic Oncol, 126, 185-90. crossref(new window)

10.
Clairmont CA, Sweasy JB (1996).Dominant negative rat DNA polymerase beta mutants interfere with base excision repair in Saccharomyces cerevisiae. J Bacteriol, 178, 656-61. crossref(new window)

11.
Clairmont CA, Sweasy JB (1998). The Pol beta-14 dominant negative rat DNA polymerase beta mutator mutant commits errors during the gap-filling step of base excision repair in Saccharomyces cerevisiae. J Bacteriol ,180, 2292-7.

12.
Dalal S, Chikova A, Jaeger J, Sweasy JB (2008). The Leu22Pro tumor-associated variant of DNA polymerase beta is dRPlyase deficient. Nucleic Acids Research, 36, 411-22. crossref(new window)

13.
Dalal S, Hile S, Eckert KA, Sun KW, Starcevic D, Sweasy JB (2005). Prostate-cancer-associated I260M variant of DNA polymerase $\beta$ is a sequence-specific mutator. Biochemistry, 44, 15664-73. crossref(new window)

14.
Dalal S, Kosa JL, and Sweasy JB (2004). The D246V Mutant of DNA Polymerase beta Misincorporates Nucleotides. The Journal of Biological Chemistry, 279, 577-84. crossref(new window)

15.
de Wind N, Dekker M, Claij N, et al (1999). HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions H. Nature Genet, 23, 359-62. crossref(new window)

16.
Dobashi Y, Shuin T, Tsuruga H, Uemura H, Torigoe S, Kubota Y (1994). DNA polymerase $\beta$ gene mutation in human prostate cancer. Cancer Research, 54, 2827-9.

17.
Dong Z, Zhao G, Zhao Q, et al (2002). A study of DNA polymerase beta mutation in human esophageal cancer. Zhonghua Yi XueZaZhi, 82, 899-902.

18.
Douki T, Reynaud-AngelinA, Cadet J, Sage E (2003). Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry, 42, 9221-8. crossref(new window)

19.
Fortini P, Pascucci B, Parlanti E, et al (2003). The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochemie, 85, 1053-71. crossref(new window)

20.
Friedberg EC (2003). DNA damage and repair. Nature, 421, 436-440. crossref(new window)

21.
Gu A, Ji G, Zhu P, et al (2010). Nucleotide excision repair polymorphisms, polycyclic aromatic hydrocarbon exposure, and their effects on sperm deoxyribonucleic acid damage and male factor infertility. Fertility and Sterility, 94, 2620-5. crossref(new window)

22.
Herrmann M, Lorenz HM, Voll R, et al (1994). A rapid and simple method for the isolation of apoptotic DNA fragmentation. Nucleic acids research, 22, 5506-7. crossref(new window)

23.
Hirsch HA, Iliopoulos D, TsichlisPN, StruhlK (2009). Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res, 69, 7507-11. crossref(new window)

24.
Hoffmann D, Hecht SS (1985). Nicotine-derived N-nitrosamines and tobaccorelated cancer: current status and future directions. Cancer Res, 45, 935-44.

25.
Husain I, Morton BS, Beard WA, et al (1995). Specific inhibition of DNA polymerase $\beta$ by its 14 kDa domain: role of single- and double-stranded DNA binding and 5'-phosphate recognition. Nucl. Acids Res, 23, 1597-603. crossref(new window)

26.
Idris H, Al-Assar O,Wilson SH (2002). DNA polymerase $\beta$. The International Journal of Biochemistry & Cell Biology, 34, 321-4. crossref(new window)

27.
IwanagaA, OuchidaM, MiyazakiK, HoriK, Mukai T (1999). Functional mutation of DNA polymerase $\beta$ found in human gastric cancer - inability of the base excision repair in vitro. Mutant Res, 435, 121-8.

28.
Khanra K, Bhattacharya C, Bhattacharyya N (2012a). Association of a newly identified variant of DNA polymerase beta ($pol{\beta}{\Delta}_{63-123,\;208-304}$) with the risk factor of ovarian carcinoma patients from India. Asian Pacific J Cancer Prev, 13, 1999-2002. crossref(new window)

29.
Khanra K, Panda K, Bhattacharya C, et al (2012b). Association between newly identified variant form of DNA polymerase $beta\Delta_{208-305}$ and ovarian cancer. Cancer Biomarkers, 11, 155-60. crossref(new window)

30.
Khanra K, Panda K, Bhattacharya C, et al (2012c). Association of two polymorphisms of DNA polymerase beta in Exon-9 and Exon 11 with ovarian carcinoma patients from India. Asian Pac J Cancer Prev, 13, 1321-4. crossref(new window)

31.
Khanra K, Panda K, Mitra AK, et al (2012d). Exon 8-9 mutation of DNA polymerase $\beta$ in ovarian carcinoma patients from Haldia, India. Asian Pacific J Cancer Prev, 13, 4183-6. crossref(new window)

32.
Kong X, Mohanty SK, Stephens J, et al (2009). Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Research, 37, 68.

33.
Kosa JL, Sweasy JB (1999a). 3-Azido-3-deoxythymidineresistant Mutants of DNA Polymerase $\beta$ Identified by in Vivo Selection. J BiolChem, 274, 3851-8.

34.
Kosa JL, Sweasy JB (1999b). The E249K nutator nutant of DNA Polymerase $\beta$Extends mispaired termini. The Journal of Biological Chemistry, 10, 35866-72.

35.
Krahn JM, Beard WA, Wilson SH (2004). Structural insights into DNA polymerase $\beta$ deterrents for misincorporation support an induced-fit mechanism for fidelity. Structure, 12, 1823-32. crossref(new window)

36.
Lang T, Dalal S, Chikova A, DiMaio D, Sweasy JB (2007). The E295K DNA polymerase beta gastric cancer-associated variant interferes with base excision repair and induces cellular transformation. Mol Cell Biol, 27, 5587-5596. crossref(new window)

37.
Lang T, Maitra M, Starcevic D, Li SX, Sweasy JB (2004). A DNA polymerase beta mutant from colon cancer cells induces mutations. Proc Natl AcadSci USA, 101, 6074-9. crossref(new window)

38.
Lawley W, Dohert A, Denniss S, Chauhan D, Pruijn G, Venrooij DG, Lunec J, Herbert K (2000). Rapid lupus autoantigen relocalization and reactive oxygen species accumulation following ultraviolet irradiation of human keratinocytes. Rheumatology, 39, 253-61. crossref(new window)

39.
Li P, Nijhawan D, Budihardjo I, et al (1997). Cytochrome c and dATP dependent formation of Apaf 1/Caspase-9 complex initiate an apoptotic protease cascade. Cell, 91, 479-89. crossref(new window)

40.
Lindahl T (1993). Instability and decay of the primary structure of DNA. Nature, 362, 709-15. crossref(new window)

41.
Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl AcadSci, 103,13765-70. crossref(new window)

42.
Ochs K, Sobol RW, Wilson SH, Kaina B (1999). Cells deficient in DNA polymerase beta are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage. Cancer Research, 59, 1544-51.

43.
Ohshima H, Tatemichi M, Sawa T (2003). Chemical basis of inflammation-inducedCarcinogenesis. Arch Biochem Biophys, 417, 3-11. crossref(new window)

44.
Pelle E, Maes D, Padulo GA, Kim KM, Smith WP (1990). An in vitro model to test relative antioxidant potential: ultraviolet-induced lipid peroxidation in liposomes. Archives of Biochemistry and Biophysics, 283, 234-240. crossref(new window)

45.
Peus D, Vasa RA, Beyerle A, Meves A, Krautmacher C, Pittelkow MR (1999). UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J Invest Dermatol, 112, 751-6. crossref(new window)

46.
Singhal RK, Prasad R, Wilson SH (1995). DNApolymerase $\beta$ conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. J BiolChem, 270, 949-57.

47.
Slupphaug G, Kavli B, Krokan HE (2003). The interacting pathways for prevention and repair of oxidative DNA damage. Mutation Research, 531, 231-51. crossref(new window)

48.
Sobol RW, Horton JK, Kuhn R, Gu H, Singhal RK, Prasad R, Rajewsky K, Wilson SH (1996). Requirement of mammalian DNA polymerase-beta in base excision repair. Nature, 379, 183-6. crossref(new window)

49.
Sobol RW, Wilson SH (2001). Mammalian DNA beta- polymerase in base excision repair of alkylation damage. Prog Nucleic Acid Res MolBiol, 68, 57-74. crossref(new window)

50.
Starcevic D, Dalal S, Sweasy JB (2004). Is there a link between DNA polymerase beta and cancer? Cell Cycle, 3, 998-1001.

51.
Sweasy JB, Lang T, Starcevic D, Sun K, Lai C, DiMaio D, Dalal S (2005). Expression of DNA polymerase $\beta$ cancerassociated variants in mouse cells results in cellular transformation. PNAS, 102, 14350-5. crossref(new window)

52.
Wilson SH, Sobol RW, Beard WA, Horton JK, Prasad R, VandeBerg BJ (2000). DNA polymerase $\beta$ and mammalian base excision repair. Cold Spring HarborSymp Quant Biol, 65, 143-55. crossref(new window)

53.
Yamtich J, Sweasy JB (2010). DNA polymerase family X: function, structure,and cellular roles. BiochimBiophysActa, 1804, 1136-50.