JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MicroRNAs and Lymph Node Metastasis in Papillary Thyroid Cancers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MicroRNAs and Lymph Node Metastasis in Papillary Thyroid Cancers
Mutalib, Nurul-Syakima Ab; Yusof, Azliana Mohamad; Mokhtar, Norfilza Mohd; Harun, Roslan; Muhammad, Rohaizak; Jamal, Rahman;
  PDF(new window)
 Abstract
Lymph node metastasis (LNM) in papillary thyroid cancer (PTC) has been shown to be associated with increased risk of locoregional recurrence, poor prognosis and decreased survival, especially in older patients. Hence, there is a need for a reliable biomarker for the prediction of LNM in this cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene translation or degradation and play key roles in numerous cellular functions including cell-cycle regulation, differentiation, apoptosis, invasion and migration. Various studies have demonstrated deregulation of miRNA levels in many diseases including cancers. While a large number of miRNAs have been identified from PTCs using various means, association of miRNAs with LNM in such cases is still controversial. Furthermore, studies linking most of the identified miRNAs to the mechanism of LNM have not been well documented. The aim of this review is to update readers on the current knowledge of miRNAs in relation to LNM in PTC.
 Keywords
microRNAs;papillary thyroid cancer;lymph node;metastasis;biomarker;
 Language
English
 Cited by
 References
1.
Acibucu F, Dokmetas HS, Tutar Y, et al (2014). Correlations between the expression levels of micro-RNA146b, 221, 222 and p27Kip1 protein mRNA and the clinicopathologic parameters in papillary thyroid cancers. Exp Clin Endocrinol Diabetes, 122, 137-43. crossref(new window)

2.
Akao Y, Nakagawa Y, Naoe T (2006). Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull, 29, 903-6. crossref(new window)

3.
Altuvia Y, Landgraf P, Lithwick G, et al (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res, 33, 2697-706. crossref(new window)

4.
Bandres E, Bitarte N, Arias F, et al (2009). MicroRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res, 15, 2281-90. crossref(new window)

5.
Bartel DP (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-233. crossref(new window)

6.
Bergamaschi A, Katzenellenbogen BS (2012). Tamoxifen downregulation of miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene, 31, 39-47. crossref(new window)

7.
Bonci D, Coppola V, Musumeci M, et al (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med, 14, 1271-7. crossref(new window)

8.
Boyerinas B, Park SM, Hau A, et al (2010). The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer, 17, 19-36.

9.
Braun J, Huttelmaier S (2011). Pathogenic mechanisms of deregulated microRNA expression in thyroid carcinomas of follicular origin. Thyroid Res, 4, 1. crossref(new window)

10.
Cahill S, Smyth P, Finn SP, et al (2006). Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer, 11, 70.

11.
Calin GA, Sevignani C, Dumitru CD, et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 101, 2999-3004. crossref(new window)

12.
Cancer Genome Atlas Research Network (2014). Integrated genomic characterization of papillary thyroid carcinoma. Cell, 159, 676-90. crossref(new window)

13.
Cantile M, Scognamiglio G, La Sala L, et al (2013). Aberrant expression of posterior HOX genes in well differentiated histotypes of thyroid cancers. Int J Mol Sci, 14, 21727-40. crossref(new window)

14.
Chang TC, Wentzel EA, Kent OA, et al (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26, 745-52. crossref(new window)

15.
Chen D, Huang J, Zhang K, et al (2014). MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc. Eur J Cancer, 50, 3050-67. crossref(new window)

16.
Chen X, Zhao G, Wang F, et al (2014). Upregulation of miR-513b inhibits cell proliferation, migration, and promotes apoptosis by targeting high mobility group-box 3 protein in gastric cancer. Tumour Biol, 35, 11081-9. crossref(new window)

17.
Chen YT, Kitabayashi N, Zhou XK, et al (2008). MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol, 21, 1139-46. crossref(new window)

18.
Chou CK, Chen RF, Chou FF, et al (2010). miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid, 20, 489-94. crossref(new window)

19.
Chou CK, Yang KD, Chou FF, et al (2013). Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J Clin Endocrinol Metab, 98, 196-205. crossref(new window)

20.
Cognetti OM, Pribitkin EA, Keane WB (2008). Management of the neck in differentiated thyroid cancer. Surg Oneal Clin N Am, 17, 157-73. crossref(new window)

21.
Corney DC, Flesken-Nikitin A, Godwin AK, et al (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesionindependent growth. Cancer Res, 67, 8433-8. crossref(new window)

22.
de la Chapelle A, Jazdzewski K (2011). MicroRNAs in thyroid cancer. J Clin Endocrinol Metab, 96, 3326-36. crossref(new window)

23.
Deng X, Wu B, Xiao K, et al (2015). MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem, 35, 71-82. crossref(new window)

24.
Dettmer M, Vogetseder A, Durso MB, et al (2013). MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J Clin Endocrinol Metab, 98, 1-7. crossref(new window)

25.
Ding J, Huang S, Wu S, et al (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol, 12, 390-9. crossref(new window)

26.
Fassina A, Cappellesso R, Simonato F, et al (2014). A 4-MicroRNA signature can discriminate primary lymphomas from anaplastic carcinomas in thyroid cytology smears. Cancer Cytopathol, 122, 274-81. crossref(new window)

27.
Felekkis K, Touvana E, Stefanou Ch, et al (2010). microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia, 14, 236-40.

28.
Flamant S, Ritchie W, Guilhot J, et al (2010). Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica, 95, 1325-33. crossref(new window)

29.
Gal H, Pandi G, Kanner AA, et al (2008). miR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochem Biophys Res Commun, 376, 86-90. crossref(new window)

30.
Gao J, Liu QG (2012). The role of miR-26 in tumors and normal tissues (Review). Oncol Lett, 6, 1019-23.

31.
Gao Y, Wang C, Shan Z, et al (2010). miRNA expression in a human papillary thyroid carcinoma cell line varies with invasiveness. Endocr J, 57, 81-6. crossref(new window)

32.
Gehring WJ, Hiromi Y (1986). Homeotic genes and the homeobox. Annu Rev Genet, 20, 147-73. crossref(new window)

33.
Geraldo MV, Yamashita AS, Kimura ET (2012). MicroRNA miR-146b-5p regulates signal transduction of TGF-${\beta}$ by repressing SMAD4 in thyroid cancer. Oncogene, 31, 1910-22. crossref(new window)

34.
Guerrero MA, Clark OH (2011). Controversies in the Management of Papillary Thyroid Cancer Revisited. ISRN Oncol, 2011, 303128,

35.
Hao HX, Xie Y, Zhang Y, et al (2012). ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature, 485, 195-200. crossref(new window)

36.
He H, Jazdzewski K, Li W, et al (2005). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A, 102, 19075-80. crossref(new window)

37.
He L, He X, Lim LP, et al (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130-4. crossref(new window)

38.
Hotomi M, Sugitani I, Toda K, et al (2012). A novel definition of extrathyroidal invasion for patients with papillary thyroid carcinoma for predicting prognosis. World J Surg, 36, 1231-40. crossref(new window)

39.
Hsieh SH, Chen ST, Hsueh C, et al (2012). Gender-specific variation in the prognosis of papillary thyroid cancer TNM stages II to IV. Int J Endocrinol, 2012, 379097.

40.
Huang KH, Lan YT, Fang WL, et al (2015). The correlation between miRNA and lymph node metastasis in gastric cancer. Biomed Res Int, 2015, 543163.

41.
Iorio MV, Croce CM (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med, 4, 143-59. crossref(new window)

42.
Ito Y, Kudo T, Kobayashi K, et al (2012). Prognostic factors for recurrence of papillary thyroid carcinoma in the lymph nodes, lung, and bone: analysis of 5,768 patients with average 10-year follow-up. World J Surg, 36, 1274-8. crossref(new window)

43.
Jonklaas J, Nogueras-Gonzalez G, Munsell M, et al (2012). The impact of age and gender on papillary thyroid cancer survival. J Clin Endocrinol Metab, 97, 878-87. crossref(new window)

44.
Ju X, Li D, Shi Q, et al (2009). Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia. Pediatr Hematol Oncol, 26, 1-10. crossref(new window)

45.
Kim HJ, Kim YH, Lee DS, et al (2008). In vivo imaging of functional targeting of miR-221 in papillary thyroid carcinoma. J Nucl Med, 49, 1686-93. crossref(new window)

46.
Kozomara A, Griffiths-Jones S (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 42, 68-73.

47.
Kramer JA, Schmid KW, Dralle H, et al (2010). Primary tumour size is a prognostic parameter in patients suffering from differentiated thyroid carcinoma with extrathyroidal growth: results of the MSDS trial. Eur J Endocrinol, 163, 637-44. crossref(new window)

48.
Krell J, Frampton AE, Jacob J, et al (2012). The clinicopathologic role of microRNAs miR-9 and miR-151-5p in breast cancer metastasis. Mol Diagn Ther, 16, 167-72. crossref(new window)

49.
Kriegel AJ, Liu Y, Fang Y, et al (2012). The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics, 44, 237-44. crossref(new window)

50.
Lagos-Quintana M, Rauhut R, Lendeckel W, et al (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853-58. crossref(new window)

51.
Lee DY, Jeyapalan Z, Fang L, et al (2010). Expression of versican 3'-untranslated region modulates endogenous microRNA functions. PLoS One, 5, 13599. crossref(new window)

52.
Lee J, Song Y, Soh EY (2014). Central lymph node metastasis is an important prognostic factor in patients with papillary thyroid microcarcinoma. J Korean Med Sci, 29, 48-52. crossref(new window)

53.
Lee JC, Zhao JT, Clifton-Bligh RJ, et al (2013). MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer, 119, 4358-65. crossref(new window)

54.
Leonardi GC, Candido S, Carbone M, et al (2012). microRNAs and thyroid cancer: biological and clinical significance (Review). Int J Mol Med, 30, 991-9.

55.
Li H, Xie H, Liu W, et al (2009). A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest, 119, 3666-77. crossref(new window)

56.
Li X, Abdel-Mageed AB, Mondal D, et al (2013). MicroRNA expression profiles in differentiated thyroid cancer, a review. Int J Clin Exp Med, 6, 74-80.

57.
Liu X, Sempere LF, Ouyang H, et al (2010). MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest, 120, 1298-309. crossref(new window)

58.
Lodewijk L, Prins AM, Kist JW, et al (2012). The value of miRNA in diagnosing thyroid cancer: a systematic review. Cancer Biomark, 11, 229-38.

59.
Lundgren CI, Hall P, Dickman PW, et al (2006). Clinically significant prognostic factors for differentiated thyroid carcinoma: a population-based, nested case-control study. Cancer, 106, 524-31. crossref(new window)

60.
Lv M, Zhang X, Li M, et al (2013). miR-26a and its target CKS2 modulate cell growth and tumorigenesis of papillary thyroid carcinoma. PLoS One, 8, 67591. crossref(new window)

61.
Ma Y, Qin H, Cui Y (2013). MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem Biophys Res Commun, 441, 958-63. crossref(new window)

62.
Machens A, Hinze R, Thomusch O, et al (2002). Pattern of nodal metastasis for primary and reoperative thyroid cancer. World J Surg, 26, 22-8. crossref(new window)

63.
Mackiewicz M, Huppi K, Pitt JJ, et al (2011). Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA. Breast Cancer Res Treat, 130, 663-79. crossref(new window)

64.
Mardente S, Mari E, Consorti F, et al (2012). HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells. Oncol Rep, 28, 2285-9.

65.
Mardente S, Zicari A, Consorti F, et al (2010). Cross-talk between NO and HMGB1 in lymphocytic thyroiditis and papillary thyroid cancer. Oncol Rep, 24, 1455-61.

66.
Marini F, Luzi E, Brandi ML (2011). MicroRNA Role in Thyroid Cancer Development. J Thyroid Res, 2011, 407123.

67.
Mattick JS (2001). Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep, 2, 986-91. crossref(new window)

68.
McConahey WM, Hay ID, Woolner LB, et al (1986). Papillary thyroid cancer treated at the mayo clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc, 61, 978-96. crossref(new window)

69.
Migliore C, Petrelli A, Ghiso E, et al (2008). MicroRNAs impair MET-mediated invasive growth. Cancer Res, 68, 10128-36. crossref(new window)

70.
Misso G, Di Martino MT, De Rosa G, et al (2014). miR-34: a new weapon against cancer? Mol Ther Nucleic Acids, 3, 194.

71.
Mitomo S, Maesawa C, Ogasawara S, et al (2008). Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci, 99, 280-6. crossref(new window)

72.
Moo TA, Fahey TJ 3rd (2011). Lymph node dissection in papillary thyroid carcinoma. Semin Nucl Med, 41, 84-8. crossref(new window)

73.
Nam S, Li M, Choi K, et al (2009). MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res, 37, 356-62. crossref(new window)

74.
Nikiforov YE (2011). Molecular analysis of thyroid tumors. Mod Pathol, 24, 34-43. crossref(new window)

75.
Nikiforov YE, Nikiforova MN (2011). Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol, 7, 569-80. crossref(new window)

76.
Nikiforova MN, Tseng GC, Steward D, et al (2008). MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab, 93, 1600-8. crossref(new window)

77.
Nymark P, Guled M, Borze I, et al (2011). Integrative analysis of microRNA, mRNA and aCGH data reveals asbestosand histology-related changes in lung cancer. Genes Chromosomes Cancer, 50, 585-97. crossref(new window)

78.
Ozata DM, Caramuta S, Velazquez-Fernandez D, et al (2011). The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma. Endocr Relat Cancer, 27, 643-55.

79.
Pallante P, Battista S, Pierantoni GM, et al (2014). Deregulation of microRNA expression in thyroid neoplasias. Nat Rev Endocrinol, 10, 88-101.

80.
Pallante P, Visone R, Croce CM, et al (2010). Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocr Relat Cancer, 17, 91-104.

81.
Pallante P, Visone R, Ferracin M, et al (2006). MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer, 13, 497-508. crossref(new window)

82.
Pasquinelli AE, Reinhart BJ, Slack F, et al (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408, 86-9. crossref(new window)

83.
Peng Y, Li C, Luo DC, et al (2014). Expression profile and clinical significance of microRNAs in papillary thyroid carcinoma. Molecules, 19, 11586-99. crossref(new window)

84.
Pikarsky E, Porat RM, Stein I, et al (2004). NF-${\kappa}B$ funtions as a tumor promoter in inflammation-associated cancer. Nature, 431, 261-66. crossref(new window)

85.
Qu N, Zhang L, Ji QH, et al (2014). Number of tumor foci predicts prognosis in papillary thyroid cancer. BMC Cancer, 4, 914.

86.
Ricarte-Filho JC, Fuziwara CS, Yamashita AS, et al (2009). Effects of let-7 microRNA on cell growth and differentiation of papillary thyroid cancer. Transl Oncol, 2, 236-41. crossref(new window)

87.
Rokah OH, Granot G, Ovcharenko A, et al (2012). Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One, 7, 35501. crossref(new window)

88.
Rossing M, Borup R, Henao R, et al (2012). Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma. J Mol Endocrinol, 48, 11-23. crossref(new window)

89.
Samimi H, Zaki Dizaji M, Ghadami M, et al (2013). MicroRNAs networks in thyroid cancers: focus on miRNAs related to the fascin. J Diabetes Metab Disord, 12, 31. crossref(new window)

90.
Scheumann GF, Gimm O, Wegener G, et al (1994). Prognostic significance and surgical management of locoregional lymph node metastases in papillary thyroid cancer. World J Surg, 18, 559-67. crossref(new window)

91.
Shaha AR, Shah JP, Loree TR (1996). Patterns of nodal and distant metastasis based on histologic varieties in differentiated carcinoma of the thyroid. Am J Surg, 172, 692-4. crossref(new window)

92.
Wada N, Duh QY, Sugino K, et al (2003). Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg, 237, 399-407.

93.
Shen S, Yue H, Li Y, et al (2014). Upregulation of miR-136 in human non-small cell lung cancer cells promotes Erk1/2 activation by targeting PPP2R2A. Tumour Biol, 35, 631-40. crossref(new window)

94.
Sheu SY, Grabellus F, Schwertheim S, et al (2010). Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br J Cancer, 102, 376-82. crossref(new window)

95.
Slaby O, Svoboda M, Fabian P, et al (2007). Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncol, 72, 397-402. crossref(new window)

96.
Stein S, Fritsch R, Lemaire L, et al (1996). Checklist: vertebrate homeobox genes. Mech Dev, 55, 91-108. crossref(new window)

97.
Sun Y, Yu S, Liu Y, et al (2013). Expression of miRNAs in papillary thyroid carcinomas is associated with BRAF mutation and clinicopathological features in Chinese patients. Int J Endocrinol, 2013, 128735.

98.
Sun Z, Zhang Y, Zhang R, et al (2013). Functional divergence of the rapidly evolving miR-513 subfamily in primates. BMC Evol Biol, 13, 255. crossref(new window)

99.
Takahashi Y, Hamada J, Murakawa K, et al (2004). Expression profiles of 39 HOX genes in normal human adult organs and anaplastic thyroid cancer cell lines by quantitative real-time RT-PCR system. Exp Cell Res, 293, 144-53. crossref(new window)