JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Impact of Global and Gene-Specific DNA Methylation in de Novo or Relapsed Acute Myeloid Leukemia Patients Treated with Decitabine
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Impact of Global and Gene-Specific DNA Methylation in de Novo or Relapsed Acute Myeloid Leukemia Patients Treated with Decitabine
Zhang, Li-Ying; Yuan, You-Qing; Zhou, Dong-Ming; Wang, Zi-Yan; Ju, Song-Guang; Sun, Yu; Li, Jun; Fu, Jin-Xiang;
  PDF(new window)
 Abstract
In this investigation, global DNA methylation patterns and the specific methylation status of 5 genes were studied in DNA from peripheral blood (PB) and impact on progression free survival (PFS) and overall-survival (OS) in patients with de novo or relapsed acute myeloid leukemia (AML) treated with decitabine-based regimens waas assessed. DNA was isolated from PB samples at the time of -1, 1, and 7 days of chemotherapy. Global methylation was determined by ELISA, and the CpG island DNA methylation profile of 5 genes using a DNA methylation PCR system. Our data demonstrated that patients with a high level of 5-mC had a poor prognosis after demethylation therapy and those who have low levels of 5-mC in PB achieved higher CR and better SO, but there was no significant correlation found between the 5-mC levels and other clinical features before treatment except the disease status. Higher methylation status of Sox2 and Oct4 genes was associated with differential response to demethylation therapy. A relatively low methylation percentage in one or both of these two genes was also associated with longer OS after decitabine based chemotherapy. We also suggest that global DNA and Oct-4/Sox2 methylation might impact on the pathogenesis of leukemia and play an important role in the initiation and progression. Moreover, dynamic analysis of 5-mC and Oct-4/Sox2 in peripheral blood nucleated cells of leukemia patients may provide clues to important molecular diagnostic and prognostic targets.
 Keywords
Acute myeloid leukemia;global DNA methylation;5-methylcytosine;Sox2;Oct4;
 Language
English
 Cited by
1.
Clinical implications of genome-wide DNA methylation studies in acute myeloid leukemia, Journal of Hematology & Oncology, 2017, 10, 1  crossref(new windwow)
 References
1.
A Language and Environment for Statistical Computing. In: Computing RFfS, editor. Vienna Austria; 2008. http://www.R-project.org.

2.
Amini S, Fathi F, Mobalegi J, et al (2014). The expressions of stem cell markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anatomy Cell Biol, 47, 1-11. crossref(new window)

3.
Baylin SB, Jones PA (2011). A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer, 11, 726-34. crossref(new window)

4.
Bullinger L, Ehrich M, Doner K, et al (2010). Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood, 115, 636-42. crossref(new window)

5.
Claus R, Plass C, Armstrong SA, et al (2010). DNA methylation profiling in acute myeloid leukemia: from recent technological advances to biological and clinical insights. Future Oncol, 6, 1415-31. crossref(new window)

6.
Claus R, Pfeifer D, Almstedt M, et al (2013) Decitabine induces very early in vivo DNA methylation changes in blasts from patients with acute myeloid leukemia. Leukemia Res, 37, 190-6. crossref(new window)

7.
Chen Z, Wang T, Cai L, et al (2102). Clinicopathological significance of non-small cell lung cancer with high prevalence of Oct-4 tumor cells, J Exp Clin Cancer Res, 31, 10. crossref(new window)

8.
Corces-Zimmerman MR, Hong WJ, Weissman IL, et al (2014). Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. PNAS 111, 2548-53. crossref(new window)

9.
Cosse G, Celton M, Lamontagne V, et al (2015). Whole genome and transcriptome analysis of a novel AML cell line with a normal karyotype. Leuk Res, 39, 709-18. crossref(new window)

10.
Dohner H, Estey EH, Amadori S, et al (2010). Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on be half of the European Leukemia Net. Blood, 115, 453-474. crossref(new window)

11.
The Cancer Genome Atlas Research Network (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 368, 2059-2074. crossref(new window)

12.
Figueroa ME, Lugthart S, Li Y, et al (2010). DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell, 17, 13-27. crossref(new window)

13.
Firas J, Liu X, Lim SM, et al (2015). Transcription factormediated reprogramming: epigenetics and therapeutic potential. Immunol Cell Biol, 1-6.

14.
Grossmann V, Schnittger S, Kohlmann A, et al (2012). A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood, 120, 2963-72. crossref(new window)

15.
Gu H, Bock C, Mikkelsen TS, et al (2010). Genomescale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nature Methods, 7, 133-6. crossref(new window)

16.
Kadia TM, Ravandi F, O'Brien S, et al (2015). Progress in acute myeloid leukemia. Clinical Lymphoma, Myeloma Leukemia1, 5, 139-51. crossref(new window)

17.
Kon Kin T, Gore SD, Zeidan AM (2015). Epigenetic therapy in acute myeloid leukemia: Current and future directions; Semin Hematol, 52, 172-82. crossref(new window)

18.
Kroeze LI, Aslanyan MG, van Rooij A, et al (2014). Characterization of acute myeloid leukemia based on levels of global hydroxymethylation. Blood, 124, 1110-8. crossref(new window)

19.
Ley TJ, Ding L, Walter MJ, et al (2010). DNMT3A mutations in acute myeloid leukemia. N Engl J Med, 363, 2424-33. crossref(new window)

20.
Liu C, Cao X, Zhang Y, et al (2012). Co-expression of Oct-4 and Nestin in human breast cancers. Mol Biol Rep, 39, 5875-81. crossref(new window)

21.
Lyon (2008). International Agency for Research on Cancer (IARC), 110-147

22.
Mazzarella L, Riva L, Luzi L, et al (2014) The Genomic and Epigenomic Landscapes of AML. Semin Hematol, 51, 259-72. crossref(new window)

23.
Meldi KM, Figueroa ME (2015). Cytosine modifications in myeloid malignancies. Pharmacol Therapeutics.

24.
Noushmehr H, Weisenberger DJ, Diefes K, et al (2010). Cancer genome atlas research network: identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell, 17, 510-22. crossref(new window)

25.
Patel JP, Gonen M, Figueroa ME, et al (2012). Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Eng J Med, 366, 1079-89. crossref(new window)

26.
Meldi K, Qin T, Buchi F, et al (2015). Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Natl Cancer Inst, 125, 1857-72.

27.
Peng S, Maihle NJ, Huang Y (2010). Pluripotency factors Lin28 and Oct4 identify a subpopulation of stem cell-like cells in ovarian cancer. Oncogene. 29, 2153-9. crossref(new window)

28.
Pollyea DA, Kohrt HE, Gallegos L, et al (2011). Safety, efficacy and biological predictors of response to sequential azacitidine and lenalidomide for elderly patients with acute myeloid leukemia. Leukemia, 26, 893-901.

29.
Riva L, Luzi L, Pelicci PG (2010) Genomics of acute myeloid leukemia: the next generation. Front Oncol, 2, 40.

30.
Rocquain J, Carbuccia N, Trouplin V, et al (2010). Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer, 10, 401-13. crossref(new window)

31.
Shih AH, Abdel-Wahab O, Patel JP, et al (2012). The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer, 12, 599-612. crossref(new window)

32.
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663-76. crossref(new window)

33.
Tien HF, Wang CH, Lin MT, et al (1995). Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia: a study of 235 Chinese patients in Taiwan. Cancer Genet Cytogenet, 84, 60-8. crossref(new window)

34.
Wertheim GB, Hexner E, Bagg A (2012). Molecular-based classification of acute myeloid leukemia and its role in directing rational therapy: personalized medicine for profoundly promiscuous proliferations. Mol Diagn Ther, 16, 357-69. crossref(new window)

35.
Zhao Q, Ren H, Feng S, et al (2015). Aberrant expression and significance of OCT-4A transcription factor in leukemia cells. Blood Cells Molecules Diseases, 54, 90-6. crossref(new window)