Advanced SearchSearch Tips
Data Mining for Identification of Molecular Targets in Ovarian Cancer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Data Mining for Identification of Molecular Targets in Ovarian Cancer
Villegas-Ruiz, Vanessa; Juarez-Mendez, Sergio;
  PDF(new window)
Ovarian cancer is possibly the sixth most common malignancy worldwide, in Mexico representing the fourth leading cause of gynecological cancer death more than 70% being diagnosed at an advanced stage and the survival being very poor. Ovarian tumors are classified according to histological characteristics, epithelial ovarian cancer as the most common (~80%). We here used high-density microarrays and a systems biology approach to identify tissue-associated deregulated genes. Non-malignant ovarian tumors showed a gene expression profile associated with immune mediated inflammatory responses (28 genes), whereas malignant tumors had a gene expression profile related to cell cycle regulation (1,329 genes) and ovarian cell lines to cell cycling and metabolism (1,664 genes).
Ovarian cancer;networks;systems biology;
 Cited by
Adelaide J, Mattei MG, Marics I, et al (1988). Chromosomal localization of the hst oncogene and its co-amplification with the int.2 oncogene in a human melanoma. Oncogene, 2, 413-6.

Albergaria A, Paredes J, Sousa B, et al (2009). Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res, 11, R40. crossref(new window)

Barbieri CE, Baca SC, Lawrence MS, et al (2012). Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet, 44, 685-9. crossref(new window)

Berger MF, Hodis E, Heffernan TP, et al (2012). Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 485, 502-6. crossref(new window)

Cannistra SA (2004). Cancer of the ovary. N Engl J Med, 351, 2519-29. crossref(new window)

Chen S, Gou WF, Zhao S, et al (2015). The role of the REG4 gene and its encoding product in ovarian epithelial carcinoma. BMC Cancer, 15, 471. crossref(new window)

Cui J, Chen Y, Chou WC, et al (2011). An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res, 39, 1197-207. crossref(new window)

D'Alessandro G, Zardawi I, Grace J, et al (1987). Immunohistological evaluation of MHC class I and II antigen expression on nevi and melanoma: relation to biology of melanoma. Pathol, 19, 339-46. crossref(new window)

Dalgliesh GL, Furge K, Greenman C, et al (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 463, 360-3. crossref(new window)

Davidson B, Stavnes HT, Holth A, et al (2011). Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. J Cell Mol Med, 15, 535-44. crossref(new window)

Davidson B, Stavnes HT, Risberg B, et al (2012). Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions. Hum Pathol, 43, 684-94. crossref(new window)

Donaldson PT, Ho S, Williams R, et al (2001). HLA class II alleles in Chinese patients with hepatocellular carcinoma. Liver, 21, 143-8. crossref(new window)

Durinck S, Ho C, Wang NJ, et al (2011). Temporal dissection of tumorigenesis in primary cancers. Cancer Discov, 1, 137-43. crossref(new window)

Ellerhorst JA, Hildebrand WH, Cavett JW, et al (2003). Heterozygosity or homozygosity for 2 HLA class II haplotypes predict favorable outcomes for renal cell carcinoma treated with cytokine therapy. J Urol, 169, 2084-8. crossref(new window)

Fonseca AL, Kugelberg J, Starker LF, et al (2012). Comprehensive DNA methylation analysis of benign and malignant adrenocortical tumors. Genes Chromosomes Cancer, 51, 949-60. crossref(new window)

Globocan (2012).

Grasso CS, Wu YM, Robinson DR, et al (2012). The mutational landscape of lethal castration-resistant prostate cancer. Nature, 487, 239-43. crossref(new window)

Guichard C, Amaddeo G, Imbeaud S, et al (2012). Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet, 44, 694-8. crossref(new window)

Hanahan D, Weinberg RA (2000). The hallmarks of cancer. Cell, 100, 57-70. crossref(new window)

Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-74. crossref(new window)

Hong CS, Cui J, Ni Z, et al (2011). A computational method for prediction of excretory proteins and application to identification of gastric cancer markers in urine. PLoS One, 6, 16875. crossref(new window)

Ikeda S, Sasazuki S, Natsukawa S, et al (2008). Screening of 214 single nucleotide polymorphisms in 44 candidate cancer susceptibility genes: a case-control study on gastric and colorectal cancers in the Japanese population. Am J Gastroenterol, 103, 1476-87. crossref(new window)

Imamura Y, Sakamoto S, Endo T, et al (2012). FOXA1 promotes tumor progression in prostate cancer via the insulin-like growth factor binding protein 3 pathway. PLoS One, 7, 42456. crossref(new window)

Jemal A, Siegel R, Ward E, et al (2008). Cancer statistics, 2008. CA Cancer J Clin, 58, 71-96. crossref(new window)

Johanneson B, McDonnell SK, Karyadi DM, et al (2010). Family-based association analysis of 42 hereditary prostate cancer families identifies the Apolipoprotein L3 region on chromosome 22q12 as a risk locus. Hum Mol Genet, 19, 3852-62. crossref(new window)

Jones S, Wang TL, Kurman RJ, et al (2012). Low-grade serous carcinomas of the ovary contain very few point mutations. J Pathol, 226, 413-20. crossref(new window)

Juarez-Mendez S, Zentella-Dehesa A, Villegas-Ruiz V, et al (2013). Splice variants of zinc finger protein 695 mRNA associated to ovarian cancer. J Ovarian Res, 6, 61. crossref(new window)

Kuhn E, Wu RC, Guan B, et al (2012). Identification of molecular pathway aberrations in uterine serous carcinoma by genomewide analyses. J Natl Cancer Inst, 104, 1503-13. crossref(new window)

Liu X, Gao Y, Zhao B, et al (2015). Discovery of microarrayidentified genes associated with ovarian cancer progression. Int J Oncol, 46, 2467-78. crossref(new window)

Mayr D, Kanitz V, Anderegg B, et al (2006). Analysis of gene amplification and prognostic markers in ovarian cancer using comparative genomic hybridization for microarrays and immunohistochemical analysis for tissue microarrays. Am J Clin Pathol, 126, 101-9. crossref(new window)

Molenaar JJ, Koster J, Zwijnenburg DA, et al (2012). Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature, 483, 589-93. crossref(new window)

Nagore E, Planelles MD, Ledesma E, et al (2002). Molecular genetic analysis of HLA-DR and -DQ alleles in Spanish patients with melanoma. Acta Derm Venereol, 82, 90-3. crossref(new window)

Ogawa JI, Inoue H, Koide S (1997). alpha-2,3-Sialyltransferase type 3N and alpha-1,3-fucosyltransferase type VII are related to sialyl Lewis(x) synthesis and patient survival from lung carcinoma. Cancer, 79, 1678-85. crossref(new window)

Ohri CM, Shikotra A, Green RH, et al (2009). Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J, 33, 118-26. crossref(new window)

Parsons DW, Jones S, Zhang X, et al (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807-12. crossref(new window)

Peifer M, Fernandez-Cuesta L, Sos ML, et al (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet, 44, 1104-10. crossref(new window)

Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, et al (2012). BAP1 loss defines a new class of renal cell carcinoma. Nat Genet, 44, 751-9. crossref(new window)

Pugh TJ, Weeraratne SD, Archer TC, et al (2012). Medulloblastoma exome sequencing uncovers subtypespecific somatic mutations. Nature, 488, 106-10. crossref(new window)

Quesada V, Conde L, Villamor N, et al (2012). Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet, 44, 47-52. crossref(new window)

Robinson G, Parker M, Kranenburg TA, et al (2012). Novel mutations target distinct subgroups of medulloblastoma. Nature, 488, 43-8. crossref(new window)

Saint-Ruf C, Gerbault-Seureau M, Viegas-Pequignot E, et al (1990). Proto-oncogene amplification and homogeneously staining regions in human breast carcinomas. Genes Chromosomes Cancer, 2, 18-26. crossref(new window)

Sakaeda M, Sato H, Ishii J, et al (2013). Neural lineage-specific homeoprotein BRN2 is directly involved in TTF1 expression in small-cell lung cancer. Lab Invest, 93, 408-21. crossref(new window)

Schmitt JF, Susil BJ, Hearn MT (1996). Aberrant FGF-2, FGF-3, FGF-4 and C-erb-B2 gene copy number in human ovarian, breast and endometrial tumours. Growth Factors, 13, 19-35. crossref(new window)

Shah SP, Roth A, Goya R, et al (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486, 395-9. crossref(new window)

Shimizu S, Kondo M, Miyamoto Y, et al (2002). Foxa (HNF3) up-regulates vitronectin expression during retinoic acidinduced differentiation in mouse neuroblastoma Neuro2a cells. Cell Struct Funct, 27, 181-8. crossref(new window)

Song Y, Washington MK, Crawford HC (2010). Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res, 70, 2115-25. crossref(new window)

Stransky N, Egloff AM, Tward AD, et al (2011). The mutational landscape of head and neck squamous cell carcinoma. Science, 333, 1157-60. crossref(new window)

Ugurel S, Uhlig D, Pfohler C, et al (2004). Down-regulation of HLA class II and costimulatory CD86/B7-2 on circulating monocytes from melanoma patients. Cancer Immunol Immunother, 53, 551-9. crossref(new window)

Varadi V, Bevier M, Grzybowska E, et al (2012). Genetic variation in ALCAM and other chromosomal instability genes in breast cancer survival. Breast Cancer Res Treat, 131, 311-9. crossref(new window)

Young RP, Hopkins RJ, Hay BA, et al (2009). Lung cancer susceptibility model based on age, family history and genetic variants. PLoS One, 4, e5302. crossref(new window)

Zhang J, Ding L, Holmfeldt L, et al (2012). The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 481, 157-63. crossref(new window)