Advanced SearchSearch Tips
Preventive Effects of Spirogyra neglecta and a Polysaccharide Extract against Dextran Sodium Sulfate Induced Colitis in Mice
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Preventive Effects of Spirogyra neglecta and a Polysaccharide Extract against Dextran Sodium Sulfate Induced Colitis in Mice
Taya, Sirinya; Kakehashi, Anna; Wongpoomchai, Rawiwan; Gi, Min; Ishii, Naomi; Wanibuchi, Hideki;
  PDF(new window)
Ulcerative colitis (UC) results from colonic epithelial barrier defects and impaired mucosal immune responses. In this study, we aimed to investigate the modifying effects of a Spirogyra neglecta extract (SNE), a polysaccharide extract (PE) and a chloroform fraction (CF) on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the mechanisms. To induce colitis, ICR mice received 3% DSS in their drinking water for 7 days. Seven days preceding the DSS treatment, oral administration of SNE, PE and CF at doses of 50, 25 and 0.25 mg/kg body weight (low dose), 200, 100 and 1 mg/kg body weight (high dose) and vehicle was started and continued for 14 days. Histologic findings showed that DSS-induced damage of colonic epithelial structure and inflammation was attenuated in mice pre-treated with SNE, PE and CF. Furthermore, SNE and PE significantly protected colonic epithelial cells from DSS-induced cell cycle arrest, while SNE, PE and CF significantly diminished apoptosis. Proteome analysis demonstrated that SNE and PE might ameliorate DSS-induced colitis by inducing antioxidant enzymes, restoring impaired mitochondria function, and regulating inflammatory cytokines, proliferation and apoptosis. These results suggest that SNE and PE could prevent DSS-induced colitis in ICR mice by protection against and/or aiding recovery from damage to the colonic epithelium, reducing ROS and maintaining normal mitochondrial function and apoptosis.
Colitis;dextran sodium sulfate;green alga;polysaccharide;proteome analysis;Spirogyra neglecta;
 Cited by
Araki Y, Mukaisyo K, Sugihara H, et al (2010). Increased apoptosis and decreased proliferation of colonic epithelium in dextran sulfate sodium-induced colitis in mice. Oncol Rep, 24, 869-74.

Ardizzone S, Bianchi Porro G (2005). Biologic therapy for inflammatory bowel disease. Drugs, 65, 2253-86. crossref(new window)

Balkwill F (2006). TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev, 25, 409-16. crossref(new window)

Baribault H, Penner J, Iozzo RV, et al (1994). Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev, 8, 2964-73. crossref(new window)

Baumgart DC, Sandborn WJ (2007). Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet, 369, 1641-57. crossref(new window)

Chattopadhyay N, Ghosh T, Sinha S, et al (2010). Polysaccharides from Turbinaria conoides: Structural features and antioxidant capacity. Food Chemistry, 118, 823-9. crossref(new window)

Chen Y, Ferguson SS, Negishi M, et al (2004). Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol Exp Ther, 308, 495-501.

Cho EJ, Shin JS, Noh YS, et al (2011). Anti-inflammatory effects of methanol extract of Patrinia scabiosaefolia in mice with ulcerative colitis. J Ethnopharmacol, 136, 428-35. crossref(new window)

Chu EC, Chai J, Ahluwalia A, et al (2007). Mesalazine downregulates c-Myc in human colon cancer cells. A key to its chemopreventive action? Aliment Pharmacol Ther, 25, 1443-9. crossref(new window)

Cooper HS, Murthy SN, Shah RS, et al (1993). Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest, 69, 238-49.

Coulombe PA, Omary MB (2002). ‘Hard' and ‘soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol, 14, 110-22. crossref(new window)

Damiani CR, Benetton CA, Stoffel C, et al (2007). Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium. J Gastroenterol Hepatol, 22, 1846-51. crossref(new window)

De Robertis M, Massi E, Poeta ML, et al (2011). The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J Carcinog, 10, 9. crossref(new window)

Ding Y, Lu B, Chen D, et al (2010). Proteomic analysis of colonic mucosa in a rat model of irritable bowel syndrome. Proteomics, 10, 2620-30. crossref(new window)

Gluckmann M, Fella K, Waidelich D, et al (2007). Prevalidation of potential protein biomarkers in toxicology using iTRAQ reagent technology. Proteomics, 7, 1564-74. crossref(new window)

Habtezion A, Toivola DM, Butcher EC, et al (2005). Keratin- 8-deficient mice develop chronic spontaneous Th2 colitis amenable to antibiotic treatment. J Cell Sci, 118, 1971-80. crossref(new window)

Hans W, Scholmerich J, Gross V, et al (2000). The role of the resident intestinal flora in acute and chronic dextran sulfate sodium-induced colitis in mice. Eur J Gastroenterol Hepatol, 12, 267-73. crossref(new window)

Hendrickson BA, Gokhale R, Cho JH (2002). Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev, 15, 79-94. crossref(new window)

Hsieh SY, Shih TC, Yeh CY, et al (2006). Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics, 6, 5322-31. crossref(new window)

Itzkowitz SH, Yio X (2004). Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol, 287, 7-17. crossref(new window)

Iwamoto M, Koji T, Makiyama K, et al (1996). Apoptosis of crypt epithelial cells in ulcerative colitis. J Pathol, 180, 152-9. crossref(new window)

Kaser A, Zeissig S, Blumberg RS (2010). Inflammatory bowel disease. Annu Rev Immunol, 28, 573-621. crossref(new window)

Kitajima S, Takuma S, Morimoto M (2000). Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Experimental Animals, 49, 9-15. crossref(new window)

Kwon KH, Murakami A, Tanaka T, et al (2005). Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression. Biochemical Pharmacol, 69, 395-406. crossref(new window)

Lee HJ, Lee HG, Choi KS, et al (2013). Diallyl trisulfide suppresses dextran sodium sulfate-induced mouse colitis: NF-kappaB and STAT3 as potential targets. Biochem Biophys Res Commun, 437, 267-73. crossref(new window)

Lin JJ, Warren KS, Wamboldt DD, et al (1997). Tropomyosin isoforms in nonmuscle cells. Int Rev Cytol, 170, 1-38. crossref(new window)

Martinez-Augustin O, Merlos M, Zarzuelo A, et al (2008). Disturbances in metabolic, transport and structural genes in experimental colonic inflammation in the rat: a longitudinal genomic analysis. BMC Genomics, 9, 490. crossref(new window)

Medhi B, Prakash A, Avti PK, et al (2008). Effect of Manuka honey and sulfasalazine in combination to promote antioxidant defense system in experimentally induced ulcerative colitis model in rats. Indian J Exp Biol, 46, 583-90.

Ngo DH, Kim SK (2013). Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol, 62, 70-5. crossref(new window)

Nishikawa M, Oshitani N, Matsumoto T, et al (2005). Accumulation of mitochondrial DNA mutation with colorectal carcinogenesis in ulcerative colitis. Br J Cancer, 93, 331-7. crossref(new window)

Ontawong A, Saowakon N, Vivithanaporn P, et al (2013). Antioxidant and renoprotective effects of Spirogyra neglecta (Hassall) Kutzing extract in experimental type 2 diabetic rats. Biomed Res Int, 2013, 820786.

Owens DW, Wilson NJ, Hill AJ, et al (2004). Human keratin 8 mutations that disturb filament assembly observed in inflammatory bowel disease patients. J Cell Sci, 117, 1989-99. crossref(new window)

Paradossi G, Cavalieri F, Pizzoferrato L, et al (1999). A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva. Int J Biological Macromolecules, 25, 309-15. crossref(new window)

Ponzielli R, Katz S, Barsyte-Lovejoy D, et al (2005). Cancer therapeutics: targeting the dark side of Myc. Eur J Cancer, 41, 2485-501. crossref(new window)

Rana SV, Sharma S, Prasad KK, et al (2014). Role of oxidative stress & antioxidant defence in ulcerative colitis patients from north India. Indian J Med Res, 139, 568-71.

Riezzo I, Turillazzi E, Bello S, et al (2014). Chronic nandrolone administration promotes oxidative stress, induction of proinflammatory cytokine and TNF-alpha mediated apoptosis in the kidneys of CD1 treated mice. Toxicol Appl Pharmacol, 280, 97-106. crossref(new window)

Rubin DC, Shaker A, Levin MS (2012). Chronic intestinal inflammation: inflammatory bowel disease and colitisassociated colon cancer. Front Immunol, 3, 107.

Shao P, Chen X, Sun P (2014). Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydr Polym, 105, 260-9. crossref(new window)

Sifroni KG, Damiani CR, Stoffel C, et al (2010). Mitochondrial respiratory chain in the colonic mucosal of patients with ulcerative colitis. Mol Cell Biochem, 342, 111-5. crossref(new window)

Song X, Bandow J, Sherman J, et al (2008). iTRAQ experimental design for plasma biomarker discovery. J Proteome Res, 7, 2952-8. crossref(new window)

Sturgill MG, Lambert GH (1997). Xenobiotic-induced hepatotoxicity: mechanisms of liver injury and methods of monitoring hepatic function. Clin Chem, 43, 1512-26.

Terzic J, Grivennikov S, Karin E, et al (2010). Inflammation and colon cancer. Gastroenterol, 138, 2101-14. crossref(new window)

Tessner TG, Cohn SM, Schloemann S, et al (1998). Prostaglandins prevent decreased epithelial cell proliferation associated with dextran sodium sulfate injury in mice. Gastroenterol, 115, 874-82. crossref(new window)

Thumvijit T, Taya S, Punvittayagul C, et al (2014). Cancer chemopreventive effect of Spirogyra neglecta (Hassall) Kutzing on diethylnitrosamine-induced hepatocarcinogenesis in rats. Asian Pac J Cancer Prev, 15, 1611-6. crossref(new window)

Thumvijit T, Thuschana W, Amornlerdpison D, et al (2013). Evaluation of hepatic antioxidant capacities of Spirogyra neglecta (Hassall) Kutzing in rats. Interdiscip Toxicol, 6, 152-6.

Treton X, Pedruzzi E, Cazals-Hatem D, et al (2011). Altered endoplasmic reticulum stress affects translation in inactive colon tissue from patients with ulcerative colitis. Gastroenterol, 141, 1024-35. crossref(new window)

Wijesekara I, Pangestuti R, Kim SK (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84, 14-21. crossref(new window)

Wirtz S, Neufert C, Weigmann B, et al (2007). Chemically induced mouse models of intestinal inflammation. Nat Protoc, 2, 541-6. crossref(new window)

Yousef M, Pichyangkura R, Soodvilai S, et al (2012). Chitosan oligosaccharide as potential therapy of inflammatory bowel disease: Therapeutic efficacy and possible mechanisms of action. Pharmacological Res, 66, 66-79. crossref(new window)

Zhao L, Wu H, Zhao A, et al (2014). The in vivo and in vitro study of polysaccharides from a two-herb formula on ulcerative colitis and potential mechanism of action. J Ethnopharmacol, 153, 151-9. crossref(new window)