Advanced SearchSearch Tips
Electron Microscopy for the Morphological Characterization of Nanocellulose Materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electron Microscopy for the Morphological Characterization of Nanocellulose Materials
Kwon, Ohkyung; Shin, Soo-Jeong;
  PDF(new window)
Electron microscopy is an important investigation and analytical method for the morphological characterization of various cellulosic materials, such as micro-crystalline cellulose (MCC), microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and cellulose nanocrystals (CNC). However, more accurate morphological analysis requires high-quality micrographs acquired from the proper use of an electron microscope and associated sample preparation methods. Understanding the interaction of electron and matter as well as the importance of sample preparation methods, including drying and staining methods, enables the production of high quality images with adequate information on the nanocellulosic materials. This paper provides a brief overview of the micro and nano structural analysis of cellulose, as investigated using transmission and scanning electron microscopy.
Nanocellulose;transmission electron microscopy;scanning electron microscopy;sample preparation;
 Cited by
Habibi, Y., Lucia, L. A. and Rojas, O. J., Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chemical Reviews 110(6):3479-3500 (2010). crossref(new window)

Moon, R. J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J., Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Review 40:3941-3994 (2011). crossref(new window)

Khalil, H.P.S. A., Davoudpour, Y., Islam, Md. N., Mustapha, A., Sudesh, K., Dungani, R. and Jawaid, M., Production and modification of nanofibrillated cellulose using various mechanical process: A review, Carbohydrate Polymers 99:649-665 (2014). crossref(new window)

Mariano, M., Kissi, N. E. and Dufresne, A.,-Cellulose nanocrystals and related nanocomposites: review of some properties and challenges, Journal of Polymer Science, Part B: Polymer Physics 52(12):791-806 (2014). crossref(new window)

De Broglie, L., The reinterpretation of wave mechanics, Foundations of Physics 1(1): 5-15 (1970). crossref(new window)

Egerton, R. F., Li, P. and Malac, M., Radiation damage in the TEM and SEM. Micron 35:399-409 (2004). crossref(new window)

Krivanek, O. L., Dellby, N., Murfitt, M. F. and Chisholm, M. F., Pennycook, T. J., Suenaga, K., Nicolosi, V., Gentle STEM: ADF imaging and EELS at low primary energies, Ultramicroscopy 110(8):935-945 (2010). crossref(new window)

Peng, Y., Gardner, D. J. and Han, Y., Drying cellulose nanofibrils: In search of a suitable method, Cellulose 19:91-102 (2012). crossref(new window)

Peng, Y., Han, Y. and Gardner, D. J., Spray-drying cellulose nanofibrils: Effect of drying process parameters on particle morphology and size distribution, Wood and Fiber Science 44(4):1-14 (2012).

Beck, S., Bouchard, J. and Berry, R., Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules, 13:1486-1494 (2012). crossref(new window)

Voronova, M. I., Zakharov, A. G., Kuznetsov, O. Y. and Surov, O. V., The effect of drying technique of nanocellulose dispersions on properties of dried materials, Materials Letters 68:164-167 (2012). crossref(new window)

Quievy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M. and Devaux, J., Influence of homogenization and drying on the thermal stability of microfibrillated cellulose, Polymer Degradation Stability 95(3):306-314 (2010). crossref(new window)

Kvien, I., Tanem, B.S. and Oksman, K., Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy, Biomacromolecules 6:3160-3165 (2005). crossref(new window)

Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J-L., Heux, L., Dubreuil, F. and Rochas, C., The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose, Biomacromolecules 9:57-65 (2008). crossref(new window)

Chinga-Carrasco, G., Yu, Y. and Diserud, O., Quantitative electron microscopy of cellulose nanofibril structures from Eucalyptus and Pinus radiate Kraft pulp fibers, Microscopy and Microanalysis 17:1-9 (2011). crossref(new window)

Zhao, J., Zhang, W., Zhang, X., Zhang, X., Lu, C. and Deng, Y., Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization, Carbohydrate Polymers 97(2): 695-702 (2013). crossref(new window)

Morais, J.P.S., Rosa, M.D., de Souza, M.D.M., Nascimento, L.D., do Nascimento, D.M. and Cassales, A.R., Extraction and characterization of nanocelluloses from raw cotton linter, Carbohydrate Polymers 91(1): 229-235 (2013). crossref(new window)

Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cal, Z. and Wu, Y., A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches, Carbohydrate Polymers 97(1): 226-234 (2013). crossref(new window)

Amiralian, N., Annamalai, P. K., Memmott, P., Taran, E., Schmidt, S. and Martin, D. J., Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone. RSC Advances 5(41), 32124-32132 (2015). crossref(new window)

Saito, T., Kimura, S., Nishiyama, Y. and Isogai, A., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules 8:2485-2491 (2007). crossref(new window)

Lu, P., and Hsieh, Y.-L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers, 82(2): 329-336 (2010). crossref(new window)

Tonoli, G.H.D., Teixeira, E.M., Correa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-da-Silva, M.A. and Mattoso, L.H.C., Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties, Carbohydrate Polymers 89(1): 80-88 (2012). crossref(new window)

Zhao, J.Q., Zhang, W., Zhang, X.D., Zhang, X.X., Lu, C.H. and Deng, Y.L., Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization, Carbohydrate Polymers 97(2): 695-702 (2013). crossref(new window)

Amin, K.N.M., Annamalai, P.K., Morrow, I.C. and Martin, D., Production of cellulose nanocrystals via a scalable mechanical method, RSC Advances 5(70): 57133-57140 (2015). crossref(new window)

Xu, X.Z., Liu, F., Jiang, L., Zhu, J.Y., Haagenson, D. and Wiesenborn, D.P., Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents, ACS Applied Materials & Interfaces, 5(8): 2999-3009 (2013). crossref(new window)

Zimmermann, T., Bordeanu, N. and Strub, E., Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohydrate Polymers 79:1086-1093 (2010). crossref(new window)

Kwon, O. EFTEM micrographs took at National Instrumentation Center for Environmetal Management, Seoul National University. Not published

Ryu, J.H. and Youn, H.J., Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals, J. of KTAPPI 43(4): 67-75 (2011).