Advanced SearchSearch Tips
Soda-Anthraquinone Pulping and Chlorine Dioxide Bleaching Properties from Moso Bamboo (Phyllostachys pubescens)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Soda-Anthraquinone Pulping and Chlorine Dioxide Bleaching Properties from Moso Bamboo (Phyllostachys pubescens)
Lee, Kyu-seong; Song, Woo-Yong; Shin, Soo-Jeong;
  PDF(new window)
Moso Bamboo was investigated as the a raw material for pulp and paper industry. Soda-Anthraquinone (Soda-AQ) pulping, elemental chlorine free bleaching was applied. Yield of soda or soda-AQ pulp was 29.3-31.7% with Kappa number 33.0-22.8 with different cooking time or anthraquinone addition at 20% active alkali. In soda or soda-AQ pulping, 81-86% of xylan was removed, which was the main reason for lower pulp yield than hardwood species. Average fiber length of Moso Bamboo soda-AQ pulp was 1.36 mm with fiber width. Soda-AQ pulp from Moso Bamboo (P-3, lowest Kappa pulp) was bleached with 5.5-6.5% of chlorine dioxide charge as D0ED1 bleaching sequence. In 3-stages ECF bleaching, final brightness of 85.3% ISO was achieved with total chlorine dioxide 6.5%.
Moso bamboo;soda-AQ pulp;morphological properties;ECF bleaching;brightness;
 Cited by
Hubbe, M. A., Venditti, R. A., and Rojas, O. J., What happens to cellulosic fibers during papermaking and recycling A review, Bioresources, 2(4):39-788 (2007).

Zaho, G., Lai, R., Li, X., He, B., and Greschik T., Replacement of softwood kraft pulp with ECF Bleached bamboo kraft pulp in fine paper, Bioresources, 5(3):1733-1744 (2010).

Junfeng, L., Runqing, H., Yanqin, S., Jingli, S., Bhattacharya, S.C., and Salam P.A., Assessment of sustainable energy potential of non-plantation biomass resources in China, Biomass & Bioenergy, 29(3):167-177 (2006).

Perdue Jr. R. E., and Niechlag, H, J., Fiber dimensions of nonwood plant materials. Tappi Journal, 44(11):776 (1961).

Sharma, Y. K., Dhawan, R., and Kar, B. G., High yield pulps from kenaf. Indian Forester, 110(4):401-406 (1984).

Park, N., and Kwon, Y., Characteristics of bamboo, In All about Bamboo, Park, K., Park, N. and Hwang, J (eds), Uk-go Press, Seoul, p. 5 (2005).

Scurlock, J. M. O., Dayton, D. C., and Hames, B., Bamboo: an overlooked biomass resources, Biomass and Bioenergy, 19:229-244 (2000).

Misra, D. K., Pulping and bleaching of nonwood fiber, In Pulp and Paper, Chemistry and Chemical Technology, vol. 1, Casey, J.P (ed), Wiley, New York, USA, p. 552 (1980).

Ribas, L. A., Colodette, J. L., Gomide, J. L., Barbosa, L. C., Maltha, C. R. A., and Gomes, F. J. B., Dissolving pulp production from bamboo, Bioresoures 7:640-651 (2012).

Won, J. M., and Ahmed, A., Characteristics of pulp and paper produced from corn stalk, Journal of Korea TAPPI, 36(5):21-28 (2004).

Abrantes, S., Amaral, E., Costa, P., Shatalov, A., and Duarte, P., Hydrogen peroxide bleaching of Arundo donax L. kraft-anthraquinone pulp - Effect of a chelating stage, Industrial Crops Products,25:288-293 (2007).

Seco, C. L., Neto, P., and Silvestre, D., Strategies to reduce the brightness reversion of industrial ECF bleached Eucalyptus globulus kraft pulp, Journal of Chemical Technology & Biotechnology, 3:218-226 (2008).

Axegard, P., and Renberg, L., The influence of bleaching chemicals and lignin content on the formation of polychlorinated dioxins and dibenzofurans, Chemosphere, 19:661-668 (1989).

Gustavson, C., Sjostrom, K., and Wafa Al-Dajani, W., The influence of cooking conditions on the bleachability and chemical structures of kraft pulps, Nord. Pulp. Pap. Res., 14:7 (1999).

Liss-Albin, C. I., Oskar, D. S., and Erik, N. S., Bleaching and delignification of partially delignified pulp with a mixture of chlorine and chlorine dioxide, US patent, US3652388, A (1972).

Axegard, P., and Renberg, L., The influence of bleaching chemicals and lignin content on the formation of polychlorinated dioxins and dibenzofurans, Chemosphere, 19:661-668 (1989).

Savant, D. V., Abdul-Rahman, R., and Ranade, D. R., Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater, Bioresource Technology, 97(9):1092-1104 (2006).

Fengel, D., and Shao, X., A chemical and ultrastructural study of the bamboo species Phyllostachys makinoi Hay, Wood Science & Technology, 18:103-112 (1984).

Littlewood, J., Potential for bamboo as a feedstock for lignocellulosic biofuel production, Ph. D thesis, Imperial College London (2014).

Yoon, S. L., Park, B. S., Kang, H. Y., and Kang, K. Y., Alkali pulping characteristics of Moso Bamboo (Phyllostachys pubescens Mazel) with various ages, Journal of Korea TAPPI, 38(3):29-37 (2006).

Kang. K.-Y., Yoon. S. L., Jeon. K. S., Park. M. S., and Park. N. C.. A Study on the utilization of ingredients and fibers from Korean bamboo species in value-added industry: Part 1, Journal of Korea TAPPI, 43(3):43-51 (2011).

Sung, Y. J., Lee, J. W., Kim, S. B., and Shin, S. J., Comparison of the soda-anthraquinone pulping properties between imported Eucalyptus mixture chips and domestic yellow poplar (Liriodendron tulipifera)chips, Journal of Korean TAPPI, 10(3):22-27 (2010).

Jung, Y. J., Choi, M. S., Kim, S. J., Jeong, M. J., Kim, Y. W., Woon, B. T., Yeo, J. K., Shin, H. N., Goo, Y. B., Ryu, K. O., Karigar, C. S., and Yang, J. K., Enzymatic hydrolysate from non-pretreated biomass of yellow poplar (Liriodendron tulipifera) is an alternative resource for bioethanol production, Journal of Korean Forest Society, 99(5):744-749 (2010).

Alves, E. F., Bose, S. K., Francis, R. C., Coldette, J. L., Lakovlev, M., and Heiningen, A. V., Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods, Carbohydrate Polymers, 82:1097-1101 (2010).

Sun, S. N., Yuan, T. Q., Li, M. F., Cao, X. F., Xu, F., and Liu, Q. Y.. Structural characterization of hemicelluloses from bamboo culms (Neosinocalamus affinis), Cellulose Chemistry and Technology, 46(3):165 (2012).

Loureiro, P. E., Evtuguin, D. V., and Carvalho, M. G. V. S.. The final bleaching of eucalypt kraft pulps with hydrogen peroxide: relationship with industrial ECF bleaching history and cellulose degradation, Journal of Chemical Tccechnology and Biotechnology, 86(3):381-390 (2011).