JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fabrication of Three-Dimensional Micro Optical and Fluidic System Using Dual Stage Nanostereolithography Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of Three-Dimensional Micro Optical and Fluidic System Using Dual Stage Nanostereolithography Process
Lim, Tae Woo; Yang, Dong-Yol;
  PDF(new window)
 Abstract
The nanostereolithography process using a femtosecond laser has been shown to have strong merits for the direct fabrication of 2D/3D micro structures. In addition, a femtosecond laser provides efficient tools for precise micromachining owing to the advantages of a small and feeble heat effect zone. In this paper, we report an effective fabrication process of 3D micro optical and fluidic devices using nanostereolithography process composed of a dual stage system. Process conditions for additive and subtractive fabrication are examined. The Piezo stage scanning system is used for 3D micro-fabrication in unit area of sub-mm scale, and the motor stage is employed in fabrication on the scale of several mm. The misalignment between the pizeo- and motor- stages is revised through rotational transformation of CAD data in the unit domain. Here, the effectiveness of the proposed process is demonstrated through examples using 3D optical and microfluidic structures.
 Keywords
Femtosecond laser;3D microstructure;Dual Stage;Two-photon polymerization;
 Language
Korean
 Cited by
1.
Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015, Korean Journal of Air-Conditioning and Refrigeration Engineering, 2016, 28, 6, 256  crossref(new windwow)
 References
1.
Geissler, M. and Xia, Y., 2004, Patterning : Principles and some new developments, Adv. Mater., Vol. 16, No. 15, pp. 1249-1269. crossref(new window)

2.
Lim, T. S., Davila, A., Wallace, D. C. and Burke, P., 2010, Assessment of mitochondrial membrane potential using an on-chip microelectrode in a microfluidic device, Lab. Chip, Vol. 10, pp. 1683-1688. crossref(new window)

3.
Lim, T. W., Park, S. H., Yang, D. Y. Kong, H. J. and Lee, K. S., 2006, Direct single-layered fabrication of 3D concavo-convex patterns in a nostereolithography, Appl. Phys. A, Vol. 84, pp. 379-383.

4.
Park, S. H., Lim, T. W., Yang, D. Y., Cho, N. C., and Lee, K. S., 2006, Fabrication of a bunch of sub- 30 nm nanofibers inside microchannels using photopolymerization via a long exposure technique, Appl. Phys. Lett., Vol. 89, Paper No. 173133.

5.
Park, S. H., Kim, K. H., Lim, T. W., Yang, D. Y., and Lee, K. S., 2007, Investigation of three dimensional pattern collapse owing to surface tension using an imperfection finite element model, Microelectronic Engineering, Vol. 85, pp. 432-439.

6.
Lim, T. W., Son, Y., Yang, D. Y., Kong, H. J., Lee, K. S., and Park, S. H., 2008, Highly effective threedimensional large-scale microfabrication using a continuous scanning method, Appl. Phys. A, Vol. 92, pp. 541-545. crossref(new window)

7.
Son, Y., Yeo, J. Y., Moon, H. U., Lim, T. W., Hong, S. J., Nam, K. H., Yoo, S. H., Grigo., C. P., Yang, D. Y., and Ko, S. H. 2011, Nanoscale electronics digital fabrication by direct femtosecond laser processing of metal nanoparticles, Adv. Mater., Vol. 23, No. 28, pp. 3176-3181. crossref(new window)

8.
Hwang, D. J., Jeon, H. J., Grigoropoulos, C. P., Yoo, J., and Russo, R. E., 2007, Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film, Appl. Phys. Lett., Vol. 91, Paper No. 251118.

9.
Miyaji, G. and Miyazaki, K., 2007, Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses, Appl. Phys. Lett., Vol. 91, Paper No. 123102.

10.
Blanco, F. J., Agirregabiria, M., Garcia, J., Berganzo, J. Tijero, M., Arroyo, M. T., Ruano, J. M., Aramburu, I., and Mayora, K., 2004, Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding, J. Micromech. Microeng., Vol. 14, pp. 1047-1056. crossref(new window)