JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Effect of Header and Channel Angle Variation on Two-Phase Flow Distribution at Multiple Junctions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Effect of Header and Channel Angle Variation on Two-Phase Flow Distribution at Multiple Junctions
Lee, Jun Kyoung;
  PDF(new window)
 Abstract
The main objective of this work is to experimentally investigate the effect of angle variation on the distribution of two-phase flow at header-channel junctions. The cross-sections of the header and the channels were fixed at and , respectively. Air and water were used as the test fluids. Four different header-channel positions were tested : Vertical header with Horizontal channels (case VM-HC), Horizontal header with Horizontal channels (case HM-HC), Horizontal header with Vertical Downward channels (case HM-VDC), and Horizontal header with Vertical Upward channels (case HM-VUC). In all cases, liquid flow distribution tended to decrease gradually in the upstream header region. However, in the downstream region, different trends could be seen. The reason for these different tendencies were identified by flow visualization in each case. The standard deviations for the liquid and gas flow distribution in each case were calculated, and the case of VM-HC had the lowest values compared to other cases because of the symmetrically distributed liquid film and strong flow recirculation near the end plate.
 Keywords
Flow distribution;Two-phase;Angle variation;Header;
 Language
Korean
 Cited by
1.
Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015, Korean Journal of Air-Conditioning and Refrigeration Engineering, 2016, 28, 6, 256  crossref(new windwow)
 References
1.
Lee, S. Y., 2006, Flow distribution behavior in condensers and evaporators, Proceedings of the 13th Int. Heat Transfer Conference, Sydney, Australia.

2.
Lee, J. K., 2005, An Experimental Study on Twophase Flow Distribution at Header-Channel Junctions, Ph.D. Dissertation, Department of Mechanical Engineering, KAIST.

3.
Webb, R. L. and Chung, K., 2004, Two-phase flow distribution in tubes of parallel flow heat exchangers, Heat Transfer Engineering, Vol. 26, pp. 3-18.

4.
Hrnjak, P., 2004, Developing Adiabatic Two Phase Flow in Headers-Distribution Issue in Parallel Flow Microchannel Heat Exchangers, Heat Transfer Engineering, Vol. 25, pp. 61-68.

5.
Dario, E. R., Tadrist, L., and Passos, J. C., 2013, Review on two-phase flow distribution in parallel channels with macro and micro hydraulic diameters : Main results, analyses, trends, Applied Thermal Engineering, Vol. 59, pp. 316-335. crossref(new window)

6.
Lee, J. K., 2009, Two-phase flow behavior inside a header connected to multiple parallel channels, Experimental Thermal and Fluid Science, Vol. 33, pp. 195-202. crossref(new window)

7.
Kim, N. H. and Han, S. P., 2008, Distribution of airwater annular flow in a header of a parallel flow heat exchanger, International Journal of Heat and Mass Transfer, Vol. 51, pp. 977-992. crossref(new window)

8.
Cho, H. and Cho, K., 2004, Mass flow rate distribution and phase separation of R-22 in multi-microchannel tubes under adiabatic condition, Nanoscale and Microscale Thermophysical Engineering, Vol. 8, pp. 129-139. crossref(new window)

9.
Vist, S. and Pettersen, J., 2004, Two-phase Flow Distribution in Compact Heat Exchanger Manifolds, Experimental Thermal and Fluid Science, Vol. 28, pp. 209-215. crossref(new window)

10.
Marchitto, A., Devia, F., Fossa, M., Guclielmini, G., and Schenone, C., 2008, Experiments on two-phase flow distribution inside parallel channels of compact heat exchangers, International Journal of Multiphase Flow Vol. 34, pp. 128-144. crossref(new window)

11.
Ahmad, M., Berthoud, G., and Mercier, P., 2009, General characteristics of two-phase flow distribution in a compact heat exchanger, International Journal of Heat and Mass Transfer, Vol. 52, pp. 442-450. crossref(new window)

12.
Lee, J. K. and Lee, S. Y., 2004, Disbution of twophase annular flow at header-channel junctions, Experimental Thermal and Fluid Science, Vol. 28, pp. 217-222. crossref(new window)

13.
Lee, J. K., 2010, Optimum Channel Intrusion Depth for Uniform Flow Distribution at Header-Channel Junctions, J. of Mech. Sci. and Tech., Vol. 24, pp. 1011-1017. crossref(new window)

14.
Troniewski, L. and Ulbrich, R., 1984, Two-phase gas liquid flow in rectangular channels, Chem. Eng. Sci., Vol. 39, pp. 751-765. crossref(new window)