JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Prediction of Wafer Yield Using Product Fabrication Virtual Metrology Process Parameters in Semiconductor Manufacturing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Prediction of Wafer Yield Using Product Fabrication Virtual Metrology Process Parameters in Semiconductor Manufacturing
Nam, Wan Sik; Kim, Seoung Bum;
  PDF(new window)
 Abstract
Yield prediction is one of the most important issues in semiconductor manufacturing. Especially, for a fast-changing environment of the semiconductor industry, accurate and reliable prediction techniques are required. In this study, we propose a prediction model to predict wafer yield based on virtual metrology process parameters in semiconductor manufacturing. The proposed prediction model addresses imbalance problems frequently encountered in semiconductor processes so as to construct reliable prediction model. The effectiveness and applicability of the proposed procedure was demonstrated through a real data from a leading semiconductor industry in South Korea.
 Keywords
Classification;Yield prediction;Virtual metrology;Semiconductor industry;
 Language
Korean
 Cited by
 References
1.
An, D., Ko, H. H., Gulambar, T., Kim, J., Baek, J. G., and Kim, S. S. (2009), A semiconductor yields prediction using stepwise support vector machine, In Assembly and Manufacturing, ISAM 2009, IEEE International Symposium, 130-136.

2.
Baek, D. H. and Han, C. H. (2003), Application of data mining for improving and predicting yield in wafer fabrication system. KIISS, 9(1), 157-177.

3.
Breiman, L. (2001), Random forests. Machine learning, 45(1), 5-32. crossref(new window)

4.
Chandola, V., Banerjee, A., and Kumar, V. (2009), Anomaly detection : A survey. ACM computing surveys (CSUR), 41(3), 15.

5.
Chang, Y. J., Kang, Y., Hsu, C. L., Chang, C. T., and Chan, T. Y. (2006), Virtual metrology technique for semiconductor manufacturing, In Neural Networks, IJCNN 2006. International Joint Conference on, IEEE, 5289-5293.

6.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002), SMOTE : Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357.

7.
Chen, C., Liaw, A., and Breiman, L. (2004), Using random forest to learn imbalanced data, University of California, Berkeley.

8.
Chen, P., Wu, S., Lin, J., Ko, F., Lo, H., Wang, J., and Liang, M. (2005), Virtual metrology : a solution for wafer to wafer advanced process control, In Semiconductor Manufacturing, ISSM 2005, IEEE International Symposium, 155-157.

9.
Chen, Y.-T., Yang, H.-C., and Cheng, F.-T. (2006), Multivariate Simulation Assessment for Virtual Metrology, Proc. IEEE Int. Conf. on Robotics and Automation(ICRA 2006), 1048-1053.

10.
Chien, C. F., Wang, W. C., and Cheng, J. C. (2007), Data mining for yield enhancement in semiconductor manufacturing and an empirical study. Expert Systems with Applications, 33(1), 192-198. crossref(new window)

11.
Cunningham, S. P., Spanos, C. J., and Voros, K. (1995), Semiconductor yield improvement: results and best practices. Semiconductor Manufacturing, IEEE Transactions on, 8(2), 103-109. crossref(new window)

12.
Ferreira, A., Roussy, A., and Conde, L. (2009), Virtual metrology models for predicting physical measurement in semiconductor manufacturing, In Advanced Semiconductor Manufacturing Conference, ASMC 2009, IEEE/SEMI, 149-154.

13.
Hosmer, D. and Lemeshow, W. (1989), Applied Logistic Regression, Ed. John Wolfley and Sons, 8-20.

14.
Kang, P. and Cho, S. (2006), EUS SVM : Ensemble of under-sampled SVMs for data imbalance problems, Proceedings in Korean Industrial Engineering Conference, 291-298.

15.
Kang, P. and Cho, S. (2006), EUS SVMs : Ensemble of under-sampled SVMs for data imbalance problems, In Neural Information Processing, Springer Berlin Heidelberg, 837-846.

16.
Kang, P., Kim, D., Lee, H. J., Doh, S., and Cho, S. (2011), Virtual metrology for run-to-run control in semiconductor manufacturing. Expert Systems with Applications, 38(3), 2508-2522. crossref(new window)

17.
Kang, P., Kim, D., Lee, S. K., Doh, S., and Cho, S. (2012), Estimating the reliability of virtual metrology predictions in semiconductor manufacturing : A novelty detection-based approach. Journal of the Korean Institue of Industrial Engineers, 38(1), 46-56. crossref(new window)

18.
Kang, P., Lee, H. J., Cho, S., Kim, D., Park, J., Park, C. K., and Doh, S. (2009), A virtual metrology system for semiconductor manufacturing. Expert Systems with Applications, 36(10), 12554-12561. crossref(new window)

19.
Khan, A. A., Moyne, J. R., and Tilbury, D. M. (2008), Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares. Journal of Process Control, 18(10), 961-974. crossref(new window)

20.
Kohavi, R. (1995), A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI, 14(2), 1137-1145.

21.
Kubat, M., Holte, R. C., and Matwin, S. (1998), Machine learning for the detection of oil spills in satellite radar images. Machine learning, 30(2/3), 195-215. crossref(new window)

22.
Kumar, N., Kennedy, K., Gildersleeve, K., Abelson, R., Mastrangelo, C. M., and Montgomery, D. C. (2006), A review of yield modelling techniques for semiconductor manufacturing. International Journal of Production Research, 44(23), 5019-5036. crossref(new window)

23.
Li, T. S., Huang, C. L., and Wu, Z. Y. (2006), Data mining using genetic programming for construction of a semiconductor manufacturing yield rate prediction system. Journal of Intelligent Manufacturing, 17(3), 355-361. crossref(new window)

24.
Liaw, A. and Wiener, M. (2002), Classification and Regression by randomForest. R news, 2(3), 18-22.

25.
Lynn, S., Ringwood, J., and MacGearailt, N. (2012), Global and local virtual metrology models for a plasma etch process, Semiconductor Manufacturing, IEEE Transactions, 25(1), 94-103. crossref(new window)

26.
Murphy, B. T. (1964), Cost-size optima of monolithic integrated circuits. Proceedings of the IEEE, 52(12), 1537-1545. crossref(new window)

27.
Park, K. S., Jun, C. H., and Kim, S. Y. (1997), The comparison and use of yield models in semiconductor manufacturing. IE interfaces, 10(1), 79-93.

28.
Quinlan, J. R. (1986), Induction of decision trees. Machine learning, 1(1), 81-106.

29.
Rosenblatt, F. (1958), The perceptron : a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386. crossref(new window)

30.
Shin, C. K. and Park, S. C. (2000), A machine learning approach to yield management in semiconductor manufacturing. International Journal of Production Research, 38(17), 4261-4271. crossref(new window)

31.
Uzsoy, R., Lee, C. Y., and Martin-Vega, L. A. (1992), A review of production planning and scheduling models in the semiconductor industry part I : system characteristics, performance evaluation and production planning. IIE Transactions, 24(4), 47-60. crossref(new window)

32.
Vapnik, V. (2000), The Nature of Statistical Learning Theory, Springer.