JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Hybrid Genetic Algorithm for the Location-Routing Problem with Simultaneous Pickup and Delivery
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Hybrid Genetic Algorithm for the Location-Routing Problem with Simultaneous Pickup and Delivery
Karaoglan, Ismail; Altiparmak, Fulya;
  PDF(new window)
 Abstract
In this paper, we consider the Location-Routing Problem with simultaneous pickup and delivery (LRPSPD) which is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots and designing vehicle routes in such a way that pickup and delivery demands of each customer must be performed with same vehicle and the overall cost is minimized. Since the LRPSPD is an NP-hard problem, we propose a hybrid heuristic approach based on genetic algorithms (GA) and simulated annealing (SA) to solve the problem. To evaluate the performance of the proposed approach, we conduct an experimental study and compare its results with those obtained by a branch-and-cut algorithm on a set of instances derived from the literature. Computational results indicate that the proposed hybrid algorithm is able to find optimal or very good quality solutions in a reasonable computation time.
 Keywords
Location-routing Problem;Simultaneous Pickup and Delivery;Genetic Algorithms;Simulated Annealing;
 Language
English
 Cited by
1.
A genetic algorithm for dynamic inbound ordering and outbound dispatching problem with delivery time windows, Engineering Optimization, 2012, 44, 7, 859  crossref(new windwow)
2.
An Improved Genetic Algorithm for Single-Machine Inverse Scheduling Problem, Mathematical Problems in Engineering, 2014, 2014, 1563-5147, 1  crossref(new windwow)
 References
1.
Albareda-Sambola, M., Diaz, J. A., and Fernandez, E. (2005), A compact model and tight bounds for a combined location-routing problem, Computers and Operations Research, 32, 407-428. crossref(new window)

2.
Angelelli Angelelli, E. and Mansini, R. (2002), The vehicle routing problem with time windows and simultaneous pick-up and delivery, In Klose, A., Speranza, M. G., and Van Wassenhove, L. N. (Eds.), Quantitative Approaches to Distribution Logistics and Supply Chain Management (249-267). Berlin: Springer-Verlag.

3.
Belenguer, J.-M., Benaaventt, E., Prins, C., Prodhon, C., and Wolfler-Calvo, R. (2006), A Branch and Cut method for the Capacitated Location-Routing Problem, International Conference on Service Systems and Service Management, 1541-1546.

4.
Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., and Laporte, G. (2007), Static pickup and delivery problems: a classification scheme and survey, TOP, 15, 1-31. crossref(new window)

5.
Berger, R. T., Coullard, C. R., and Daskin, M. S. (2007), Location-Routing Problems with Distance Constraints, Transportation Science, 41, 29-43. crossref(new window)

6.
Clarke, C. and Wright, J. Q. (1964), Scheduling of vehicle from a central depot to a number of delivery points. Operations Research, 12, 568-581. crossref(new window)

7.
Duhamel, C., Lacomme, P., Prins, C., and Prodhon, C. (2010), A GRASP${\times}$ELS approach for the capacitated location-routing problem, Computers and Operations Research, 37, 1912-1923. crossref(new window)

8.
Gen, M. and Cheng, R. (1997), Genetic algorithms and engineering design, NewYork: Wiley.

9.
Hansen, P. H., Hegedahl, B., Hjortkjær, S., and Obel, B. (1994), A heuristic solution to the warehouse location- routing problem, European Journal of Operational Research, 76, 111-127. crossref(new window)

10.
Karaoglan, I., Altiparmak, F., Kara, I., and Dengiz, B. (2009a), Formulations for Location-Routing Problem with Simultaneous Pickup and Delivery, Research Paper, http://w3.gazi.edu.tr/-fulyaal/Papers/LRPSPD_MIPFormulations.pdf.

11.
Karaoglan, I., Altiparmak, F., Kara, I., and Dengiz B. (2011), A Branch and Cut Algorithm for the Location- Routing Problem with Simultaneous Pickup and Delivery, European Journal of Operational Research, 211(2), 318-332. crossref(new window)

12.
Laporte, G., Nobert, Y., and Pelletier, P. (1983), Hamiltonian location problems, European Journal of Operational Research, 12, 82-89. crossref(new window)

13.
Laporte, G., Nobert, Y., and Arpin, D. (1986), An exact algorithm for solving a capacitated location-routing problem, Annals of Operations Research, 6, 293-310.

14.
Laporte, G. (1988), Location-routing problems. In Golden, B. L. and Assad, A. A. (Eds.), Vehicle Routing: Methods and Studies (163-198), Amsterdam: North- Holland.

15.
Marinakis, Y. and Marinaki, M. (2008), A Particle Swarm Optimization Algorithm with Path Relinking for the Location Routing Problem, Journal of Mathematical Modelling and Algorithms, 7, 59-78. crossref(new window)

16.
Melechovsky, J. and Prins, C. (2005), A metaheuristic to solve a location routing problem with non-linear costs, Journal of Heuristics, 11, 375-391. crossref(new window)

17.
Min, H., Jayaraman, V., and Srivastava, R. (1998), Combined location-routing problems: A synthesis and future research directions, European Journal of Operational Research, 108, 1-15. crossref(new window)

18.
Mosheiov, G. (1994), The Travelling Salesman Problem with pick-up and delivery, European Journal of Operational Research, 79, 299-310. crossref(new window)

19.
Nagy, G. and Salhi, S. (1998), The many-to-many location- routing problem. TOP, 6, 261-275. crossref(new window)

20.
Nagy, G. and Salhi, S. (2007), Location-routing: Issues, models and methods, European Journal of Operational Research, 177, 649-672. crossref(new window)

21.
Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2008), A survey on pickup and delivery problems, Journal fur Betriebswirtschaft, 58, 81-117. crossref(new window)

22.
Perl, J. and Daskin, M. S. (1984), A unified warehouse location-routing methodology, Journal of Business Logistics, 5, 92-111.

23.
Perl, J. and Daskin, M. S. (1985), A warehouse locationrouting problem, Transportation Research Part B, 19, 381-396.

24.
Prins, C. (2004), A simple and effective evolutionary algorithm for the vehicle routing problem. Computers and Operations Research, 31, 1985-2002. crossref(new window)

25.
Prins, C., Prodhon, C., and Calvo, R. (2006a), A Memetic Algorithm with Population Management (MA|PM) for the Capacitated Location-Routing Problem, In Gottlieb, J. and Raidl, G. (Eds.), Evolutionary Computation in Combinatorial Optimization, Springer Berlin/Heidelberg, 183-194.

26.
Prins, C., Prodhon, C., and Calvo, R. W. (2006b), Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking, 4OR, 4, 221-238. crossref(new window)

27.
Prodhon, C. (2008), http://prodhonc.free.fe/homepag.

28.
Salhi, S. and Nagy, G. (1999), A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling, Journal of the Operational Research Society, 50, 1034-1042. crossref(new window)

29.
Salhi, S. and Rand, G. K. (1989), The effect of ignoring routes when locating depots, European Journal of Operational Research, 39, 150-156. crossref(new window)

30.
Srivastava, R. (1993), Alternate solution procedures for the location-routing problem, Omega, 21, 497-506. crossref(new window)

31.
Srivastava, R. and Benton, W. C. (1990), The locationrouting problem: Considerations in physical distribution system design, Computers and Operations Research, 17, 427-435. crossref(new window)

32.
Suman, B. and Kumar, P. (2006), A survey of simulated annealing as a tool for single and multiobjective optimization, Journal of the Operational Research Society, 57(10), 1143-1160. crossref(new window)

33.
Tuzun, D. and Burke, L. I. (1999), Two-phase tabu search approach to the location routing problem, European Journal of Operational Research, 116, 87-99. crossref(new window)

34.
Wu, T. H., Low, C., and Bai, J. W. (2002), Heuristic solutions to multi-depot location-routing problems, Computers and Operations Research, 29, 1393-1415. crossref(new window)

35.
Yu, V. F., Lin, S. W., Lee, W., and Ting, C. J. (2010), A Simulated Annealing Heuristic for the Capacitated Location Routing Problem, Computers and Industrial Endineering, 58(2), 288-299. crossref(new window)