1.
Athanasios, P. and Dimitris, K. (2001), Breeding Decision Trees Using Evolutionary Techniques,Proceedings of the Eighteenth International Conference on Machine Learning, 393-400.
2.
Bennett, K. P. and Mangasarian O. L. (1994), Multicategory Discrimination via Linear Programming, Optimization Methods and Software, 3, 29-39.
3.
Breiman, L., Friedman, J. H., Olashen, R. A. and Stone, C. J. (1984), Classification and Regression Trees, Chapman and Hall/CRC, London, UK.
4.
Clerc, M. (1999), TheSwarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization, Proceedings of the 1999 Congress on Evolutionary Computation, 1951-1957.
5.
Duda, R. and Hart, P. (1973), Pattern Classification and Scene Analysis, A Wiley-Interscience Publication, New York.
6.
Eberhart, R. C. and Shi, Y. (2001), Particle Swarm Optimization: Developments, Applications and Resources, Proceedings of the 2001 Congress on Evolutionary Computation, 81-86.
7.
Frank, A. and Asuncion, A. (2010), UCI Machine Learning Repository (http://archive.ics.uci.edu/ml), Irvine, CA.
8.
Hyafil, L. and Rivest, R. L. (1976), Constructing Optimal Binary Decision Trees is NP-Complete, Information Processing Letters, 5, 15-17.
9.
Kass, G. V. (1980), An Exploratory Technique for Investigating Large Quantities of Categorical Data, Applied Statistics, 29, 119-127.
10.
Kennedy, J. and Eberhart, R. C. (1995), Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, 1942-1948.
11.
Lior, R. and Oded, M. (2005), Top-Down Induction of Decision Trees Classifiers-A Survey, IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 35, 476-487.
12.
Murthy, S. K. (1998), Automatic Construction of Decision Trees from Data: A Multidisciplinary Survey, Data Mining and Knowledge Discovery, 2, 345-389.
13.
Naumov, G. E. (1991), NP-Completeness of Problems of Construction of Optimal Decision Trees. Soviet Physics, 36, 270-271.
14.
Quinlan, J. R. (1993), C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc, San Francisco, CA.
15.
Saher, E. and Shaul, M. (2007), Anytime Learning of Decision Trees, Journal of Machine Learning Research, 8, 891-933.
16.
Schuermann, J. and Doster, W. (1984), A Decision-theoretic Approach in Hierarchical Classifier Design, Pattern Recognition, 17, 359-369.
17.
Shi, Y. and Eberhart, R. C. (2001), Fuzzy Adaptive Particle Swarm Optimization, Proceedings of the 2001 Congress on Evolutionary Computation, 101-106.
18.
Utgoff, P. E. (1989), Perceptron Trees: A Case Study in Hybrid Concept Representations, Connection Science, 1, 377-391.
19.
Xie, X. F., Zhang, W. J., and Yang, Z. L. (2002), Adaptive Particle Swarm Optimization on Individual Level, International Conference of 2002 6th on Signal Processing, 1215-1218.
20.
Zhan, Z. H., Jun, Z., Yun, L. and Chung, H. S. (2009), Adaptive Particle Swarm Optimization, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39, 1362-1381.