JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A meta-analysis on the effects of the differentiated instruction in mathematics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Mathematical Education
  • Volume 54, Issue 4,  2015, pp.335-350
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/mathedu.2015.54.4.335
 Title & Authors
A meta-analysis on the effects of the differentiated instruction in mathematics
Kim, Sun Hee;
  PDF(new window)
 Abstract
The purpose of this study was to investigate the effectiveness of the differentiated instruction in mathematics by a meta-analysis. Among the studies conducted for last twenty three years, the relevant 49 research articles were selected, 80 effect sizes were calculated for the cognitive domain and 70 effect sizes for the affective domain. Effect sizes were analyzed with school levels, student level, group organization method such as homogeneous vs. heterogeneous, class transfer and adjusting class sizes for each cognitive domain and affective domain. The results are as the followings: In the cognitive domain, the overall effect size of the differentiated instruction produced a medium effect(effect size
 Keywords
meta-analysis;differentiated instruction;
 Language
Korean
 Cited by
 References
1.
고은자 (2004). 초등학교 수학과에서 수준별 이동 수업이 학업성취 및 학습태도에 미치는 효과. 공주대학교 석사학위논문. Ko, E. J. (2004). The effects of level differentiated instruction in elementary school mathematics classes on student learning achievement and attitude. Master's thesis of Kongju National University.

2.
곽소라 (2004). 효과적인 수학실 활용 방안과 수학실 활용이 수준별 집단에 미치는 영향. 전주교육대학교 교육대학원 석사학위논문. Gwak, S. R. (2004). Effect practical use plan of mathematics room and effect that mathematics room practical use gets in group by level. Master's thesis of Jeonju national university of education.

3.
권상준 (2004). 수학과 수준별 수업에 관한 연구. 금오공과대학교 석사학위논문. Kwon, S. J. (2004). The study for ability-group learning on mathematics. Master's thesis of Kum-oh National Institute of Technology.

4.
김효지, 김홍찬 (2013). 수학과 수준별 수업과 수준별 평가에 대한 고등학생들의 인식 조사. 교과교육연구 6(1), 1-22. Kim, H. J. & Kim, H. C. (2013). A study on the perceptions of high school students on the level-differentiated classes and level-differentiated evaluations. The Journal of Curriculum and Instruction Studies 6(1), 1-22.

5.
남현우, 이기택 (2002). 학급내 수준별 소집단 협동학습이 수학과 학업성취도 및 태도에 비치는 효과. 인문과학논총 10, 47-68. Nam, H. W. & Lee, K. T. (2002). The effects of a level-based small-group cooperative learning on students' achievements and attitudes within a class. The Journal of Humanities 10, 47-68.

6.
박혜숙, 박기양, 김영국, 박규홍, 박윤범, 김수환, 한옥동 (1997). 단계형 수준별 수업을 위한 중학교의 수학교과 운영 방안. 수학교육 36(2), 183-195. Park, H. S , Park, K. Y , Kim, Y. K , Park, K. H , Park, Y. B , Kim, S. H , & Han, O. D. (1997). Middle school mathematics curriculum plan for the differentiated instruction. The Mathematical Education 36(2), 183-195.

7.
송혜향 (2011). 메타분석법. 경기: 청문각. Song, H. H.(2011). Meta-analysis method. Kyunggi: CMG Publication.

8.
서현경 (2008). 수학과 수준별 이동수업에 대한 학생들의 인식과 수준별 이동수업의 개선방안. 수학교육논문집 22(3), 253-273. Seo, H. K. (2008). The opinions of students about level-based class and improving methods about level-based instruction on mathematics. Communications of mathematical education 22(3), 253-273.

9.
신성균, 박선화, 이대현, 이봉주, 최승현, 강완, 박경미, 조영미 (2005). 수학과 교육과정 개정 시안 연구. 한국교육과정평가원, 연구보고 CRC 2005-4. Shin, S., Park, S., Lee, D., Lee, B., Choi, S., Kang, W., Park, K., & Cho, Y. (2005). A study of developing a draft of a mathematics curriculum. KICE CRC 2005-4.

10.
오성삼 (2009). 메타분석의 이론과 실제. 건국대학교 출판부. Oh, S. S. (2009). Theory and practice of meta-analysis. Seoul: Konkuk University Press.

11.
오윤경 (2009). 중학교 수학 수업에서 수준별 학습자에 따른 스캐폴딩 전략이 학업성취도 및 문제해결력에 미치는 효과. 인천대학교 석사학위논문. Ohh, Y. K. (2009). The effects of scaffolding strategies for differentiated students on academic achievement and problem solving in middle schcol math class. Master's thesis of University of Inchon.

12.
오윤숙, 박성선 (2008). 소집단 협동 학습에서 성격유형별 집단 구성 방법이 수학적 태도 및 성취도에 미치는 영향. 수학교육논문집 22(5), 211-227. Oh, Y. & Park, S. (2008). The influence of the grouping method by personality types on mathematical attitude and achievement in small group cooperative learning. Communications of mathematical education 22(2), 211-227.

13.
용혜숙 (2011). 수학 수준별 이동 수업상황에서의 TAI 협동학습이 학업성취도 및 태도에 미치는 영향. 강원 대학교 교육대학원 석사학위논문. Yong, H. S. (2011). A study on the effects of TAI cooperative learning on the achievement and attitude of high school students in level-differentiated classrooms. Master's thesis of Kangwon National University.

14.
이인호, 조윤동, 이광상 (2015). 2014년 국가수준 학업성 취도 평가 결과 분석 : 수학. 한국교육과정평가원 ORM 2015-45-3. Lee, I. H., Cho, Y. & Lee, K.(2015). 2014 National Assessment of Educational Achievement results analysis: Mathematics. KICE ORM 2015-45-3.

15.
장원석 (2001). 수학과에서의 수준별 소집단 협동학습을 통한 학습부진아의 학업성취도에 관한 연구. 경기대학교 석사학위논문. Jang, W. S. (2001). The study about learning achievement of under-achieved students through leveled small-group activities in math. Master thesis of Kyunggi University.

16.
정수현 (2013). 수준별 이동수업에서 협동학습이 학업성 취도와 수학학습태도에 미치는 영향. 목포대학교 교육대학원 석사학위논문. Jeong, S. H. (2013). The impact of cooperative learning on mathematics academic achievement and attitude on learning in ability grouping. Master's thesis of Mokpo Natinal University of education.

17.
정정수, 김원규 (2012). 수학과 수준별 이동수업이 전문계 고등학교 학생들의 학업성취도 및 학습태도에 미치는 영향 연구. 과학교육연구논총 27(2), 29-40. Jeong, J. & Kim, W. K. (2012). A study on the effects of mathematics level-based moving class on vocational high school students' academic achievement and learning attitude. Bulletin of Science Education 27(2), 29-40.

18.
조진희 (2014). 수준별 학습지를 통한 배움 중심 교육의 소집단 협동학습 (고등학교 공통수학 이차방정식 단원 중심으로). 동국대학교 석사학위논문. Cho, J. H. (2014). The effects of instructional level through small group cooperative learning in the mathematics learning. Master thesis of Dongguk University.

19.
최식, 송영무 (1998). 수학과 수준별 이동수업에서 열린 수업 모형의 적용에 관한 연구. 대한수학교육학회논문집 8(1), 41-58. Choi, S. & Song, Y. M. (1998). On application of open educational model in level based differentiated curriculum. Journal of the Korea society of educational studies in mathematics. 8(1) 41-58 .

20.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, UK: Wiley.

21.
Cogan, L. S., Schimidt, W. H. & Wiley, D. E. (2001). Who takes what math and in which track? Using TIMSS to characterize U.S. students' eighth-grade mathematics learning opportunities. Educational Evaluation and Policy Analysis 23(4), 323-341. crossref(new window)

22.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Academic.

23.
Cooper, H. (2010). Research synthesis and meta-analysis: A step by step approach(4th ed.). CA: SAGE publication Inc.

24.
Hedges, L. V., & Olkin, I. (1983). Regression models in research synthesis. The American Statistician, 37(2), 137-140.

25.
Higgins, J., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ 327, 557-560 crossref(new window)

26.
Reed, J. (2008). Shifting up: A look at advanced mathematics classes in tracked schools. The High School Journal, 91(4), 45-58. crossref(new window)