JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A study on the communication in process of applying mathematical modeling to children in elementary mathematics classroom
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Mathematical Education
  • Volume 55, Issue 1,  2016, pp.41-71
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/mathedu.2016.55.1.41
 Title & Authors
A study on the communication in process of applying mathematical modeling to children in elementary mathematics classroom
Lee, Ji Young; Kim, Min Kyeong;
  PDF(new window)
 Abstract
The purpose of this study is to investigate elementary students` communication in process of applying mathematical modeling. For this study, 22 fifth graders in an elementary school were observed by applying mathematical modeling process (presentation of problem model inducement activity model exploration activity model application activity). And the level of their communication with their activity sheets and outputs, observation records and interviews were also analyzed. Additionally, by analyzing the activity cases of and , this study researched that what is a positive influence on students` communication skills. Whereas showed significant advance in the level of communication, who communicated actively on speaking area but not on every areas showed insensible changes. To improve communication abilities, cognitive tension and debate situation are needed. This means, mathematical education should continuously provide students with mathematical communication learning, and a class which contains mathematical communication experiences (such as mathematical modeling) will be needed.
 Keywords
Mathematical modeling;Mathematical communication;Modeling process;Number and operation;
 Language
Korean
 Cited by
 References
1.
교육과학기술부 (2008). 초등학교 교육과정 해설(IV), 서울: 대한교과서 주식회사.(Ministry of Education, Science and Technology. (2008). Elementary school curriculum explanation(IV), Seoul: Daehan textbook.)

2.
교육과학기술부 (2009a). 수학 6-가, 서울: (주)두산.(Ministry of Education, Science and Technology. (2009a). Elementary mathematics 6-ga, Seoul: Doosan.)

3.
교육과학기술부 (2009b). 초등학교 교육과정 해설, 국가교육과정정보센터(http://ncic.re.kr/)(Ministry of Education, Science and Technology. (2009b). Elementary school curriculum explanation, http://ncic.re.kr)

4.
교육부 (1997). 초등학교 교육과정 해설(IV), 서울: 대한교과서.(Ministry of Education. (1997). Elementary school curriculum explanation(IV), Seoul: Daehan textbook..)

5.
교육인적자원부 (2007). 초등학교 교육과정, 교육인적자원부.(Ministry of Education & Human Resources Development. (2007). Elementary school curriculum, Seoul: Ministry of Education & Human Resources Development.)

6.
권기석, 박배훈 (1997). 고등학교에서 수학적 모델링의 활용에 관한 연구, 수학교육 36(2), 149-159.(Kwon, G. S., & Park, B. H. (1997). A study on the use of mathematical modeling in high school, The Mathematical Education 36(2), 149-159.)

7.
김경희 (2010a). OECD 학업성취도 국제비교 연구(PISA 2009) 결과 보고서, 서울: 한국교육과정평가원.(Kim, K. H. (2010a). The programme for international students assessment(PISA 2009) results, Seoul: KICE)

8.
김경희 (2010b). 수학.과학 성취도 추이변화 국제비교연구(TIMSS 2011) 예비검사 시행보고서, 서울: 한국교육과정평가원.(Kim, K. H. (2010b). A technical report of the field survey in Korea = The trends in international mathematics and science study(TIMSS 2011), Seoul: KICE)

9.
김민경 (2004). 현실적인 문장제에 관한 초등학생의 반응 분석, 학교수학 6(2), 135-151.(Kim, M. K. (2004). Children's realistic response on realistic word problems, School Mathematics 6(2), 135-151.)

10.
김민경 (2010). 수학적 모델링: 초등수학 중심으로, 서울: 교우사.(Kim, M. K. (2010). Mathematical modeling in the elementary school curriculum, Seoul: kyowoosa.)

11.
김민경, 민선희, 강선미 (2009). 초등교사들의 수학적 모델링에 대한 인식 조사 연구, 학교수학회논문집 12(4), 411-431.(Kim, M. K., Min, S. H., & Kang, S. M. (2009). A survey of the elementary teachers' perception and the status about mathematical modeling, The Korean School Mathematics Society 12(4), 411-431.)

12.
김민경, 홍지연, 김은경 (2009). 수학적 모델링 사례 분석을 통한 초등 수학에서의 지도 방안 연구, 수학교육 48(4), 365-385.(Kim, M. K., Hong, J. Y., & Kim, E. K. (2009). Exploration of teaching method through analysis of cases of mathematical modeling in elementary mathematics, The Mathematical Education 48(4), 365-385.)

13.
김민경, 홍지연, 김혜원 (2010). 수학적 모델링 적용을 위한 문제상황 개발 및 적용, 수학교육 49(3), 313-328.(Kim, M. K., Hong, J. Y., & Kim, H. W. (2010). A study on development of problem contexts for an application to mathematical modeling, The Mathematical Education 49(3), 313-328.)

14.
김상화 (2010). 초등학교 수업에서 수학적 의사소통의 목표설정 및 지도의 실제. 박사학위논문, 한국교원대학교.(Kim, S. H. (2010). Standards and practices for promoting mathematical communication in elementary classrooms. Unpublished doctoral dissertation, Korea National University of Education.)

15.
김선희 (1998). 의사소통 지도가 수학 학습에 미치는 효과. 석사학위논문, 이화여자대학교.(Kim, S. H. (1998). Effects of communication learning mathematics. Unpublished master's thesis, Ewha Womans University.)

16.
김홍희 (2009). 초등 수학영재학급 학생의 수학적 모델링 과정에 관한 분석. 석사학위논문, 경인교육대학교.(Kim, H. H. (2009). Analysis of the mathematical modeling process of mathematically gifted elementary schoolers. Unpublished master's thesis, Gyeongin National University of Education.)

17.
박경미 (2004). 학업 성취도 국제 비교 연구에 나타난 우리나라 학생들의 수학 성취도 심층 분석, 수학교육학연구 14(4), 87-401.(Park, K. M. (2004). An in-depth analysis of the result of the international comparative study of mathematics, The Journal of Educational Research in Mathematics 14(4), 87-401.)

18.
박경미, 김동원 (2011). 우리나라 수학교육의 문제점 진단을 위한 조사 연구, 수학교육 50(1), 89-102.(Park, K. M., & Kim, D. W. (2011). A survey research to diagnose the problems of mathematics education in Korea, The Mathematical Education 50(1), 89-102.)

19.
방정숙, 정희진 (2006). 학습자 중심 교수법에 대한 초등교사의 이해와 실행형태: 수학적 의사소통을 중심으로, 학습자중심교과교육연구 6(1), 297-321.(Pang, J. S., & Jeong, H. J. (2006). Elementary school teachers' understanding and practice on learner-centered instruction: focused on mathematical communication, Journal of Learner-Centered Curriculum and Instruction 6(1), 297-321.)

20.
신성기 (2009). 초등학교 6학년 학생들의 수학적 의사소통 수준. 석사학위논문, 한국교원대학교.(Shin, S. K. (2009). An analysis of elementary school 6th grade students' mathematical communicative level. Unpublished master's thesis, Korea National University of Education.)

21.
신은주, 권오남 (2001). 탐구지향 수학적 모델링에 관한 연구, 수학교육학연구 11(1), 157-177.(Shin, E. J., & Kwon. O. N. (2001). A study of explorationoriented mathematical modeling, The Journal of Educational Research in Mathematics 11(1), 157-177.)

22.
신은주, 이종희 (2004). 중학생들의 모델링 활동에서 메타인지 분석에 관한 사례연구, 수학교육학연구 14(4), 403-419.(Shin, E. J., & Lee, C. H. (2004). An analysis of metacognition on the middle school students' modeling activity, The Journal of Educational Research in Mathematics 14(4), 408-419.)

23.
오영열, 오태욱 (2009). 동료 피드백을 활용한 수학적 의사소통이 수학 학습에 미치는 효과, 한국수학교육학회지 23(2), 327-347.(Oh, Y. Y., & Oh, T. W. (2009). The effects of mathematical communication-centered teaching using peer feedback on mathematics learning, Communication of Mathematical Education 23(2), 327-347.)

24.
유현주 (2000). 수학적 의사소통과 수학의 교수-학습, 학교수학 2(1), 53-72.(Yu, H. J. (2000). Mathematical communication and mathematics learning-teaching, School Mathematics 2(1), 53-72.)

25.
이미애, 김수환 (2001). 초등학교 수학 수업에서의 구체물 활용과 수학적 의사소통에 관한 연구, 한국초등수학교육학회지 5, 99-120.(Lee, M. A., & Kim, S. H. (2001). A study of using concrete materials and mathematical communications in the primary mathematics class, Journal of Elementary Mathematics Education in Korea 5, 99-120.)

26.
이종희, 김선희 (2002). 수학적 의사소통의 지도에 관한 실태조사, 학교수학 4(1), 63-78.(Lee, C. H., & Kim, S. H. (2002b). Investigation of present state for teaching mathematical communication, School Mathematics 4(1), 63-78.)

27.
이종희, 김선희, 채미애 (2001). 수학적 의사소통 능력의 평가 기준 개발, 수학교육학연구 11(1), 207-221.(Lee, C. H., Kim, S. H., & Chae, M. A. (2001). The assessment rubric development of mathematical communication ability, The Journal of Educational Research in Mathematics 11(1), 207-221.)

28.
이종희, 최승현, 김선희 (2002). 수학적 의사소통을 강조한 수학 학습 지도의 효과, 수학교육 41(2), 157-172.(Lee, C. H., Choi, S. H., & Kim, S. H. (2002). Effects of mathematics instruction that emphasize the mathematical communication, The Mathematical Education 41(2), 157-172.)

29.
이해영 (2005). 초등학교 5, 6학년 교사들의 수학적 의사소통 수업에 대한 인식과 교수의 실제. 석사학위논문, 한국교원대학교.(Lee, H. Y. (2005). 5th and 6th-grade teachers' perception of mathematical communication and their teaching practice. Unpublished master's thesis, Korea National University of Education.)

30.
전상림 (2008). 수학적 모델링 지도가 학업 성취도에 미치는 영향. 석사학위논문, 강원대학교.(Jun, S. L. (2008). The effect of the mathematical modeling instruction on mathematical learning accomplishment. Unpublished master's thesis, Kangwon National University.)

31.
정유리 (2010). 수학적 모델링을 활용한 수업이 학업성취도에 미치는 효과. 석사학위논문, 강원대학교.(Jung, Y. R. (2010). The effects of mathematical modeling on learning performance. Unpublished master's thesis, Kangwon National University.)

32.
조영준, 신항균 (2010). 초등학교 수학교실에 나타난 수학적 의사소통 유형 분석, 한국초등수학교육학회지 14(3), 681-700.(Cho, Y. J., & Shin, H. K. (2010). Analysis of pattern of mathematical interaction occurring in the elementary school mathematics class, Journal of Elementary Mathematics Education in Korea 14(3), 681-700.)

33.
최인숙 (1998). 수학 학습 과정에서 일지 쓰기의 효과에 관한 연구. 석사학위논문, 이화여자대학교.(Choi, I. S. (1998). Effects of journal writing as a communication in learning mathematics. Unpublished master's thesis, Ewha Womans University.)

34.
한국교육과정평가원 (2004). 교사, 수업, 그리고 학생 성취: TIMSS 1999 결과를 중심으로, 서울: 선명인쇄주식회사.(Korea Institute for Curriculum and Evaluation(KICE). (2004). Teacher, lesson, and student achievement: Focused on TIMSS 1999 results, Seoul: Sunyung Publishers.)

35.
한국교육과정평가원 (2007). PISA 2006 결과 분석 연구: 과학적 소양, 읽기 소양, 수학적 소양 수준 및 배경 변인 분석, -연구보고 RRE 2007-1.(Korea Institute for Curriculum and Evaluation(KICE). (2007). The results from PISA 2006, Research report RRE 2007-1.)

36.
홍우주, 방정숙 (2008). 초등학교 6학년 수업에서의 수학적 의사소통과 학생의 수학적 사고 분석, 학교수학회논문집 11(2), 201-219.(Hong, W. J., & Pang, J. S. (2008). An analysis of teacher-student communication and students' mathematical thinking in sixth grade mathematics classrooms, Journal of the Korean School Mathematics Society 11(2), 201-219.)

37.
홍정희, 송순희 (1995). 수학적 모델링을 활용한 수학 탐구수업 효과의 고찰, 수학교육 34(1), 93-96.(Hong, J. H., & Song, S. H. (1995). Consideration of effect of mathematical inquiry learning with the application of mathematical modeling, The Mathematical Education 34(1), 93-96.)

38.
홍지연 (2007). 수학적 모델링을 활용한 수업이 초등학교 4학년 수와 연산 학습에 미치는 효과. 석사학위논문, 이화여자대학교.(Hong, J. Y. (2007). Effect of the instruction using mathematical modeling elementary school's 4th graders' learning of numbers and operations in elementary school. Unpulished master's thesis, Ewha Womans University.)

39.
Adams, T. (2003). Reading mathematics: More than words can say, The Reading Teacher 56(8), 786-795.

40.
Balacheff, N. (1991). Treatment of refutations: Aspects of the complexity of a constructivist approach to mathematics learning. In E. von Glaserfeld (ED.), Radical constructivism in mathematics education (89-110). Dordrecht, The Netherlands: Kluwer Academic.

41.
Boaler, J. (2001). Mathematical modeling and new theories of learning, Teaching Mathematics and Its Application 20(3), 121-127. crossref(new window)

42.
Bransford, J. D., Zech, L., Schwartz, D., Barron, B., Bye, N., & The Cognition and Technology Group at Vanderbilt University (1996). Fostering mathematical thinking in middle school students: Lessons from research. In R. J. Sternberg & T. Ben-Zeev (Eds.), The Nature of mathematical thinking (203-250). NJ: Lawrence Erlbaum, Hillsdale.

43.
Doerr, H. M. (1997). Experiment, simulation and analysis: An integrated instructional approach to the concept of force, International Journal of Science Education 19(3), 265-282. crossref(new window)

44.
Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data, Journal for Research in Mathematics Education 34(2), 110-136. crossref(new window)

45.
English, L. D. (2003). Reconciling theory, research, and practice: A models and modeling perspective, Educational Studies in Mathematics 54, 225-248. crossref(new window)

46.
English, L. D. (2006). Mathematical modeling in the primary school: Children's construction of a consumer guide, Educational Studies in Mathematics 63, 303-323. crossref(new window)

47.
English, L. D., & Watters, J. J. (2005a). Mathematical modeling in the early school years, Mathematics Education Research Journal 16(3), 58-79. crossref(new window)

48.
English, L. D., & Watters, J. J. (2005b). Mathematical modeling with 9-year-olds. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education 2 (.297-304). Melbourne: PME.

49.
Freudenthal. H. (1991). Revisiting mathematics education, Dordrecht: Kluwer.

50.
Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key components of models and modeling. In P. Cobb & E. Yackel (Eds.), Symbolizing, communicating, and mathematizing (361-383). Mahwah, NJ: Lawrence Erlbaum Associates.

51.
Lesh, R., Cramer, K., Doerr, H. M., Post, T., & Zawojewski, J. (2003). Model development sequences. In H. M. Doerr & R. Lesh (Eds.), Beyond constructivism: A models and modeling perspective on mathematics Models and modeling perspectives on mathematics teaching, learning, and problem solving (.3-58). Hillsdale, NJ: Lawrence Erlbaum Associates.

52.
Lesh, R., & Lehrer, R. (2003). Models and modeling perspectives on the development of students and teachers, Mathematical Thinking and Learning 5(2), 109-130. crossref(new window)

53.
Lesh, R., Middleton, J. A., & Caylor, E. (2008). A science need: Designing tasks to engage students in modeling complex data, Educational Study Math 68, 113-130. crossref(new window)

54.
Llinares, S., & Roig, A. I. (2008). Secondary school students' construction and use of mathematical models in solving word problems, International Journal of Science and Mathematics Education 6, 505-532. crossref(new window)

55.
Middleton, J. A., Lesh, R., & Heger, M. (2003). Interest, identity, and social functioning: Central features of modeling activity. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics teaching, learning, and problem solving. Mahwah, NJ: Lawrence Erlbaum Associates.

56.
National Council of Teachers of Mathematics (1991). Mathematical modeling in the secondary school curriculum, Reston, VA: Author

57.
National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics, Reston, VA: Author.

58.
Niss, M. (1989). Aims and scope of application and modeling in mathematics curriculum. In W. Blum, J. S. Berry et al. (Eds.), Applications and modeling in learning and teaching mathematics (22-31). Chichester, UK: Elis Horwood Limited.

59.
Open University (1990). Some approaches to modeling. In D. Blane & M. Evans (Eds.), Mathematical modeling of the senior years (43-55). Parkville: Acacia Press.

60.
Skovsmose, O. (1994). Toward a philosophy of critical mathematics education, Dordrecht: Kluwer Academic.

61.
Swetz, F. (1991). Incorporating mathematical modeling into the curriculum, Mathematics Teacher 82(9), 722-726.

62.
Swetz, F., & Hartzler, J. S. (1991). Mathematical modeling in the secondary school curriculum: A resource guide of classroom exercises, Reston, VA: NCTM.

63.
Verschaffel, L., & De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school: A teaching experiment with fifth graders, Journal for Research in Mathematics Education 28(5), 577-601. crossref(new window)

64.
Zbiek, R. M. (1998). Prospective teachers' use of computing tools to develop and validate functions as mathematical models, Journal for Research in Mathematics Education 29(2), 184-201. crossref(new window)