JOURNAL BROWSE
Search
Advanced SearchSearch Tips
An Analysis of Teacher`s Knowledge about Reductio Ad Absurdum -Focused on `Subject Matter Knowledge` and `Knowledge of Students` Understanding`-
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Mathematical Education
  • Volume 55, Issue 1,  2016, pp.91-106
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/mathedu.2016.55.1.91
 Title & Authors
An Analysis of Teacher`s Knowledge about Reductio Ad Absurdum -Focused on `Subject Matter Knowledge` and `Knowledge of Students` Understanding`-
Hwang, Jinyeon; Shin, Bomi;
  PDF(new window)
 Abstract
The aim of this study was to analyze characteristics of teachers` knowledge about reductio ad absurdum. In order to achieve the aim, this study conducted didactical analysis about reductio ad absurdum through examining previous researches and developed a questionnaire with reference to the results of the analysis. The questionnaire was given to 34 high school teachers and qualitative methods were used to analyze the data obtained from the written responses by the participants. This study also elaborated the framework descriptors for interpreting the teachers` responses in the light of the didactical analysis and the data was elucidated in terms of this framework. The specific features of teachers` knowledge about reductio ad absurdum were categorized into five types as a result. This study raised several implications for teachers` professional development for effective mathematics instruction related to reductio ad absurdum.
 Keywords
reductio ad absurdum;teachers` knowledge;proposition;
 Language
Korean
 Cited by
1.
교과서의 귀류법 도입과 활용에 대한 고찰 및 개선 방안,이기돈;홍갑주;

대한수학교육학회지:학교수학, 2016. vol.18. 4, pp.839-856
 References
1.
곽주철, 류희주 (2008). 평면도형에 대한 교사의 PCK와 수업 실제의 비교분석, 학교수학 10(3), 423-441.(Kwak, J. C. & Ryu, H. S. (2008). Comparative analysis of the PCK of teachers on plane figure and their educational practice, School mathematics 10(3), 423-441.)

2.
교육과학기술부 (2011). 수학과 교육과정. 교육과학기술부고시 제 2011-361호 [별책 8]. 서울: 교육과학기술부.(Ministry of Education, Science and Technology (2011). Mathematics curriculum. MEST announcement 2011-361 [Seperate Volume 8]. Seoul: MEST)

3.
김영옥 (2009). 대학 신입생들의 명제에 대한 이해, 학교수학 11(2), 261-280.(Kim, Y. O. (2009). First-year undergraduate students' understanding about statements. School mathematics 11(2), 261-280.)

4.
김원경 외. (2014). 고등학교 수학 II. 서울: 비상교육.(Kim, W. K. et al. (2014). High school mathematics II. Seoul: Visang.)

5.
김희정, 박은진 (2004). 비판적 사고를 위한 논리. 서울: 아카넷.(Kim, H. J. & Park, E. J. (2004). Logic for critical thinking. Seoul: Acanet.)

6.
노영순 (2010). 알기 쉬운 집합론. 서울: 교우사.(Noh, Y. S. (2010). Set theory. Seoul: Kyowoosa.)

7.
박경미 (2009). 수학의 교수학적 내용 지식(PCK)에 대한 연구의 메타적 검토, 수학교육 48(1), 93-105.(Park, K. M. (2009). A meta review of the researches on PCK in mathematics. The mathematical education 48(1), 93-105.)

8.
박선화, 박은아, 서민희 (2013). 고등학교 성취평가제 운영의 실제-수학-. 서울: 한국교육과정평가원.(Park, S. H., Park, E. A., & Suh, M. H. (2013). A study on developing operational plans for implementing achievement standards-based assessment in high schools: Mathematics. Seoul: Korea Institute for Curriculum and Evaluation.)

9.
박지현 (2008). 학습자의 오개념과 오류에 대한 교사들의 Pedagogical Content Knowledge 사례 연구 -중학교 1학년 함수 영역을 중심으로-. 석사학위 논문, 이화여자대학교.(Park, J. H. (2008). A case study on pedagogical content knowledge about students' misconceptions and errors: Focused on the 7th grade function part. Unpublished a master's thesis, Ewha Womans University.)

10.
방정숙, 정유경 (2013). 수학 수업에서 드러나는 교사 지식을 분석하기 위한 틀로서의 '교사 지식의 사중주(Knowledge Quartet)', 수학교육 52(4), 567-586.(Pang, J. S. & Jung, Y. K. (2013). 'The knowledge quartet' as a framework of analyzing teacher knowledge in mathematics instruction, The mathematical education 52(4), 567-586.)

11.
송형수 (2008). 기초 집합론. 서울: 교우사.(Song, H. S. (2008). Basic set theory. Seoul: Kyowoosa.)

12.
안선영, 방정숙 (2006). 평면도형의 넓이에 대한 교사의 교수학적 내용 지식과 수업 실제 분석. 수학교육학연구 16(1), 25-41.(An, S. Y. & Pang, J. S. (2008). An analysis of the relationship between teachers' pedagogical content knowledge and teaching practice: Focusing on the area of plane figure. Journal of educational research in mathematics 16(1), 25-41.)

13.
우정호 (2008). 학교수학의 교육적 기초. 서울: 서울대학교출판부.(Woo, J. H. (2008). Educational basis of school mathematics. Seoul: SNU press.)

14.
이경은(2007). 수업 실제에서 나타나는 교사의 Pedagogical Content Knowledge에 관한 사례연구-중학교 도형의 성질을 중심으로-. 석사학위논문, 서울대학교.(Lee, K. E. (2007). Pedagogical content knowledge represented in teaching practice: Focusing on the case of mathematics teachers' teaching 'property of figure'. Unpublished a master's thesis, Seoul National University.)

15.
이병무 (2009). 집합론의 이해. 서울: 경문사.(Lee, B. M. (2009). Set theory. Seoul: Kyungmoonsa.)

16.
이준열 외 (2014). 고등학교 수학 II. 서울: 천재교육.(Lee, J. Y. et al. (2014). High school mathematics II. Seoul: Chunjae.)

17.
조성민(2006). 교육과정 실행의 관점에서 본 수학교사 지식과 수업의 관련성 연구-고등학교 함수 내용을 중심으로-. 박사학위논문, 이화여자대학교.(Cho, S. M. (2006). Research on the relationship between teacher's knowledge and classroom practice evaluated from curriculum implementation perspective: Focused on knowledge of function in mathematics. Unpublished a doctoral thesis, Ewha Womans University.)

18.
Akkoc H., Yesildere, S., & Ozmantar, F. (2007). Prospective mathematics teachers' pedagogical content knowledge of definite integral: the problem of limit process. Proceedings of the British society for research into learning mathematics 27(3), 7-12. Great Britain; British Society for Research into Learning Mathematics.

19.
Antonini, S. (2006). Indirect proof : An interpreting model. In J. Novotana, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education (pp. 190-197). Prague, Czech Republic.

20.
Antonini, S. & Mariotti, M. A. (2007). Indirect proof: An interpreting model. Proceedings of the 5th congress of the European society for research in mathematics education 2, 541-550.

21.
Ball, D., Hill, H., & Bass, H. (2005). Who knows mathematics well enough to teach third grade and how can we decide? American educator, 29(1), 14-46.

22.
Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching. Journal of teacher education 59(5), 389-407. crossref(new window)

23.
Chick, H., Baker, M., Pham, T., & Cheng, H. (2006). Aspects of teachers' pedagogical content knowledge for decimals. In J. Novotana, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education (Volume 2, pp. 297-304). Prague, Czech Republic.

24.
Durand-Guerrier, V. (2003). Which notion of implication is the right one? From logical considerations to a didactic perspective. Educational studies in mathematics 53, 5-34. crossref(new window)

25.
Fennema, E. & Frnake, L. M. (1992). Teachers' knowledge and its impact. In D. A. Grouws (Eds.), Handbook of research on mathematics teaching and learning (pp. 147-164). NY: Macmillan.

26.
Freudenthal, H. (1974). Mathematics as an educational task. Dordrecht: D. reidel publishing company.

27.
Fulks, W. (2014). Advanced calculus: An introduction to analysis. USA: Wiley.

28.
Greer, B., & Mukhopadhyay, S. (2005). Teaching and learning the mathematization of uncertainty: Historical, cultural, social and political contexts. In G. A. Jones (Eds.), Exploring probability in school: Challenges for teaching and learning (pp. 297-324). USA: Springer.

29.
Hiebert, J. (2013). The constantly underestimated challenge of improving mathematics instruction. In K. R. Leatham (Eds.) Vital direction for mathematics education research (pp. 45-56). New York: Springer.

30.
Jacquette, D. (2008). Mathematical proof and discovery reductio ad absurdum. Informal logic 28(3), 242-261. crossref(new window)

31.
Levenson, E. (2012). Teachers' knowledge of the nature of definitions: The case of the zero exponent. Journal of mathematical behavior 31, 209-219. crossref(new window)

32.
Lin & Lin (2008). 집합론. (이흥천 역). 서울: 경문사. (원저 1999년 출판).

33.
Marks, R. (1990). Pedagogical content knowledge: From a mathematical case to a modified conception. Journal of teacher education 41(3), 3-11.

34.
Misailidou, C. (2008). Assessing and developing pedagogical content knowledge: A new approach. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings the 32nd conference of the international. group for the psychology of mathematics education (Volume 3, pp. 391-398). Morelia, Mexico.

35.
Petrou, M. & Goulding, M. (2011). Conceptualising teachers' mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 9-25). New York: Springer.

36.
Polya, G. (2005). 어떻게 문제를 풀 것인가? (우정호 역), 서울: 교우사. (원저 1956년 출판).

37.
Rowland, T. & Ruthven, K. (2011). Introduction: Mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 1-8). New York: Springer.

38.
Rubenstein, R. N., Craine, T. V., & Butts, T. R. (2000). Integrated mathematics 3. Boston: McDougal Littell.

39.
Rutheven, K. (2011). Conceptualising mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 83-96). New York: Springer.

40.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher 15, 4-14.

41.
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard educational review 57, 1-22. crossref(new window)

42.
Stein, M. K., Pemillard, J., & Smith, M. S. (2007). How curriculum influences student learning. In F. K. Lester (Eds.), Second handbook of research on mathematics teaching and learning (pp. 319-369). NC: Information Age Publishing.

43.
Steinbring, H. (2011). Changed views on mathematical knowledge in the course of didactical theory development: Independent corpus of scientific knowledge or result of social constructions? In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 43-64). New York: Springer.

44.
Watson, A. & Barton, B. (2011). Teaching mathematics as the contextual application of mathematical modes of enquiry. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 65-82). New York: Springer.

45.
Wu, Y. J., Lin, F., & Lee, Y. (2003). Students' understanding of proof by contradiction. Proceedings of the 2003 joint meeting of PME and PMENA (Volume 2, pp. 443-449). Honolulu, HI.