JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on Analysis of Likelihood Principle and its Educational Implications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Mathematical Education
  • Volume 55, Issue 2,  2016, pp.193-208
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/mathedu.2016.55.2.193
 Title & Authors
A Study on Analysis of Likelihood Principle and its Educational Implications
Park, Sun Yong; Yoon, Hyoung Seok;
  PDF(new window)
 Abstract
This study analyzes the likelihood principle and elicits an educational implication. As a result of analysis, this study shows that Frequentist and Bayesian interpret the principle differently by assigning different role to that principle from each other. While frequentist regards the principle as `the principle forming a basis for statistical inference using the likelihood ratio` through considering the likelihood as a direct tool for statistical inference, Bayesian looks upon the principle as `the principle providing a basis for statistical inference using the posterior probability` by looking at the likelihood as a means for updating. Despite this distinction between two methods of statistical inference, two statistics schools get clues to compromise in a regard of using frequency prior probability. According to this result, this study suggests the statistics education that is a help to building of students` critical eye by their comparing inferences based on likelihood and posterior probability in the learning and teaching of updating process from frequency prior probability to posterior probability.
 Keywords
Likelihood;Likelihood Principle;Statistics Education;critical Eye;
 Language
Korean
 Cited by
 References
1.
교육부 (2015). 수학과 교육과정(교육부 고시 제2015-74호).(Ministry of Education(2015). Curriculum of mathematics department(2015-74).)

2.
김달호 (2013). R과 WinBUGS를 이용한 베이지안 통계학. 경기도 파주 : 자유아카데미.(Kim, D.H. (2013). Bayesian statistics using R and WinBUGS. Pajoo: Jayooacademy.)

3.
김우철, 김재주, 박병욱, 박성현, 송문섭, 이상열, 이영조, 전종우, 조신섭 (2001). 현대통계학. 서울 : 영지문화사.(Kim, U.C., Kim, J.J., Park, B.U., Park, S.H., Song, M.S., Lee, S.Y., Lee, Y.J., Jeon, J.W., & Jo, S.S. (2001). Modern Statistics. Seoul: Youngjimunhwasa.)

4.
김혜랑 (2004). 가능성 원리 지도를 위한 중등 통계 교육과정의 개선 방향. 석사학위 논문, 이화여자대학교.(Kim, H.R. (2004). A study on understanding of the principle and improvement of statistics curriculum in high school. Master's thesis of Ewha Womans University.)

5.
서울대학교 교육연구소 (2000). 교육학 용어사전(전정판). 서울 : 하우동설.(Education Research Institute Seoul National University (2000). The dictionary of educational terms. Seoul: Haudongseol.)

6.
송상헌, 방정숙, 강옥기, 강현영, 권나영, 김남희, 류성림, 박만구, 백석윤, 송미영, 윤정호, 이영하, 장혜원, 정영옥, 최승현, 최종현, 최지영, 임재훈 (2013). 수학교육학 연구 방법. 서울 : 경문사.(Song, S.H., Bang, J.S., Kang, O.G., Kang, H.Y., Kwon, N.Y., Kim, N.H., Ryu, S.L., Park, M.G., Baek, S.Y., Song, M.Y., Yoon, J.H., Lee, Y.H., Jang, H.W., Jung, Y.O., Choi, S.H., Choi, J.H., Choi, J.Y., & Lim, J.H. (2013). Research methods for mathematics education. Seoul: Kyeongmoonsa.)

7.
신수영 (2011). 초.중.고등학교 확률과 통계단원에 나타난 표본개념에 대한 분석. 석사학위 논문, 이화여자대학교.(Shin, S.Y. (2011). An Analysis of the Concept of Sample Shown in the Probability.Statistics chapter of the mathematics textbooks from primary school to high school. Master's thesis of Ewha Womans University.)

8.
우정호, 정영옥, 박경미, 이경화, 김남희, 나귀수, 임재훈 (2007). 수학교육학 연구방법론. 서울 : 경문사.(Woo, J.H., Jeong, Y.O., Park, K.M., Lee, K.H., Na, K.S., & Lim, J.H. (2007). Research methods for mathematics education. Seoul: Kyeongmoonsa.)

9.
이경화 (1996). 확률 개념의 교수학적 변환에 관한 연구. 박사학위 논문, 서울대학교.(Lee, K.H. (1996). A study on the didactic transposition of the concept of probability. Doctoral dissertation, Seoul national university.)

10.
이영하 (2016). 개인적인 면담 및 의사교환. (2016년 2월 13일).(Lee, Y.H. (2016). Personal communications. (2016-2-13)

11.
이영하, 심효정 (2003). 확률.통계 연구에 대한 수학교육학적 고찰 - <수학교육>에 게재된 논문을 중심으로-. 수학교육 42(2), 111-119. (Lee, Y.H. & Sim, H.J. (2003). Focused on papers published in, the Journal of Korea Society of Mathematical Education= A trend analysis on the educational research of theprobability and statistics. The Mathematical education. 42(2), 111-119.)

12.
이영하, 허지영 (2010). 분포 개념의 연계성 목표 관점에 따른 중학교 확률 단원 분석. 수학교육학연구 20(2), 163-183.(Lee, Y.H. & Huh, J.Y. (2010). An analysis of the 8th grade probability curriculum in accordance with the distributionconcepts. The journal of educational research inmathematics 20(2), 163-183.)

13.
이은희, 김원경 (2015). 국내의 통계교육 연구동향 비교 분석. 수학교육 54(3), 241-259.(Lee, E.H. & Kim, W.K. (2015). A comparative analysis onresearch trends of statistics education between Korea andoverseas. The Mathematical education 54(3), 241-259.)

14.
이정연 (2005). 조건부 확률 개념의 이해에 관한 연구. 석사학위 논문, 서울대학교.(Lee, J.Y. (2005). Study on the understanding of conditional probability concept. Master's thesis, Seoul national university.)

15.
허지영 (2010). 분포 개념의 연계성에 따른 중학교 2학년 확률단원의 지도. 석사학위 논문, 이화여자대학교.(Her, J.Y. (2010). An analysis of the context of the middle-school second-grader's textbook from the perspective of the concept of distribution and its correlation with the context of the seventh national mathematics curriculum. Master's thesis of Ewha Womans University.)

16.
Albert, J. (1995). Teaching Inference about Proportions Using Bayes and Discrete Models. Journal of Statis tics Education 3(3). http://www.amstat.org/publications/jse/v3n3/ albert.html.

17.
Berger, J. & Wolpert, R. (1988), The likelihood principle(2nd edition). Hayward, CA: IMS.

18.
Berger, J. , Fienberg, S. , Gani, J. & Krickeberg, K. (1988). Lectures notes in statistics. New York : Springer-Verlag.

19.
Birnbaum, A. (1962). On the foundations of statistical inference, Journal of the American Statistical Association 57, 269-326. crossref(new window)

20.
Borovcnik, M. G. (1986). Revising probabilities according to new information : A fundamental stochastic intuition. Proceedings of the Second International Conference on Teaching Statistics, 298-302.

21.
Chatterjee, S. K. (2003). Statistical thought ; A perspective and history. Oxford University Press.

22.
Cornfield, J. (1966). Sequential trials, sequential analysis, and the likelihood principle, American Statistician 29, 18-23.

23.
Dale, A. I. (1991). A history of inverse probability: From Thomas Bayes to Karl Pearson. New York : Springer-Verlag.

24.
Edwards, A. W. F. (1978). Commentary on arguments of Thomas Bayes. Scandinavian Journal of Statistics 5, 116-118.

25.
Edwards, A. W. F. (1992). Likelihood : Expanded edition. Baltimore : The Johns Hopkins University Press.

26.
Falk, R. (1986). Conditional probabilities : Insights and difficulties. Proceedings of the Second International Conference on Teaching Statistics, 992-997.

27.
Gandenberger, G. (2015). A new proof of the likelihood principle, The British Journal for the Philosophy of Science 66(3), 475-503. crossref(new window)

28.
Gillispie, C. Fox, R. & Grattan-Guiness, I. (1997). Pierre-Simon Laplace 1749-1827 : A life in exact science. Princeton University Press.

29.
Hacking, I. (1965). Logic of statistical inference. Cambridge University Press.

30.
Hacking, I.(1999). The emergence of probability. Cambridge University Press.

31.
Howie, D. (2002). Interpreting probability: Controversies and developments in the early twentieth century. Cambridge University Press.

32.
Konold, C. (1991). Understanding students' beliefs about probability, In E. V. Glaserfeld, Radical Constructivism in Mathematical Education, 139-156.

33.
Martin, R. & Liu, C. (2014). Discussion : Foundations of statistical inference, Revisited. Statistical Science 29(2), 247-251. crossref(new window)

34.
Mayo, D. (2014). On the Birnbaum argument for the strong likelihood principle. Statistical Science 29(2), 227-239. crossref(new window)

35.
McGrayne, S. B. (2013). 불멸의 이론. (이경식 옮김). 서울 : 휴먼사이언스. (원저 2011년 출판)

36.
Milne, P.(1996). log [p(h/eb)/p(h/b)]is the One True Measure of Confirmation. Philosophy of Science, 63, 21-26 crossref(new window)

37.
Pawitan, Y. (2001). In all likelihood - Statistical modelling and inference using likelihood. Oxford : Clarendon Press.

38.
Rossman, A. J. & Short, T. H. (1995). Conditional probability and education reform : Are they compatible? Journal of Statistics Education 3(2). http://www.amstat.org/publications/jse/v3n2/rossman.html.

39.
Royall, R. M. (1999). Statistical evidence: A likelihood paradigm. London: Chapman & Hall.

40.
Salmon, W. C. (1994). 과학적 추론의 기초. (양승렬 역), 서울 : 서광사. (원저 1967년 출판)

41.
Salsburg, D. (2003). 천재들의 주사위. (최정규 역), 서울: 뿌리와이파리. (원저 2001년 출판)

42.
Savage, L. (1962). Foundations of statistical inference: A discussion. London : Methuen.

43.
Sober, E. (1988). Reconstructing the past: Parsimony, evolution, and inference. Cambridge, MA: MIT Press.

44.
Steel, D. (2003). A bayesian way to make stopping rules matter, Erkenntnis 58, 213-227. crossref(new window)

45.
Steel, D.(2007). Bayesian confirmation theory and the likelihood principle. Synthese 156[1] , 53-77. crossref(new window)

46.
Stigler, S. M. (1986). The history of statistics: The measurement of uncertainty before 1900. Harvard University Press.

47.
Stigler, S. M.(1999). Statistics on the table: The history of statistical concepts and methods. Harvard University Press.

48.
Stigler, S. M.(2010). 통계학의 역사. (조재근 역), 경기도 파주 : 한길사. (원저 1986년 출판)

49.
Tomlinson, S. & Quinn, R. (1997). Understanding conditional probability. Teaching Statistics 19[1] , 2-7. crossref(new window)

50.
Watson, J. M. (1995). Conditional probability : Its place in the mathematics curriculum. Mathematics Teacher 88[1] , 12-17.