JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BOUNDEDNESS IN THE FUNCTIONAL NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Pure and Applied Mathematics
  • Volume 22, Issue 2,  2015, pp.101-112
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/jksmeb.2015.22.2.101
 Title & Authors
BOUNDEDNESS IN THE FUNCTIONAL NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS
GOO, YOON HOE;
  PDF(new window)
 Abstract
Alexseev's formula generalizes the variation of constants formula and permits the study of a nonlinear perturbation of a system with certain stability properties. In this paper, we investigate bounds for solutions of the functional nonlinear perturbed differential systems using the two notion of h-stability and -similarity.
 Keywords
h-stability;-similarity;functional differential systems;
 Language
English
 Cited by
 References
1.
V.M. Alekseev: An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).

2.
S.K. Choi & N.J. Koo: h−stability for nonlinear perturbed systems. Ann. of Diff. Eqs. 11 (1995), 1-9.

3.
S.K. Choi & H.S. Ryu: h−stability in differential systems. Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.

4.
S.K. Choi, N.J. Koo & H.S. Ryu: h-stability of differential systems via t-similarity. Bull. Korean. Math. Soc. 34 (1997), 371-383.

5.
S.K. Choi, Y.H. Goo & N.J. Koo: Lipschitz exponential asymptotic stability for nonlinear functional systems. Dynamic Systems and Applications 6 (1997), 397-410.

6.
S.K. Choi, N.J. Koo & S.M. Song: Lipschitz stability for nonlinear functional differential systems. Far East J. Math. Sci(FJMS)I 5 (1999), 689-708.

7.
R. Conti, Sulla: t-similitudine tra matricie l’equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma 8 (1957), 43-47.

8.
Y.H. Goo: Boundedness in the perturbed differential systems. J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 20 (2013), 223-232.

9.
Y.H. Goo: Boundedness in nonlinear functional perturbed differential systems. submitted.

10.
Y.H. Goo: Boundedness in perturbed nonlinear differential systems. J. Chungcheong Math. Soc. 26 (2013), 605-613. crossref(new window)

11.
Y.H. Goo & D.H. Ry: h-stability of the nonlinear perturbed differential systems. J. Chungcheong Math. Soc. 23 (2010), 827-834.

12.
G.A. Hewer: Stability properties of the equation by t-similarity. J. Math. Anal. Appl. 41 (1973), 336-344. crossref(new window)

13.
V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol.. Academic Press, New York and London, 1969.

14.
B.G. Pachpatte: On some retarded inequalities and applications J. Ineq. Pure Appl. Math. 3 (2002) 1-7.

15.
M. Pinto: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), 161-175.

16.
M. Pinto: Stability of nonlinear differential systems. Applicable Analysis 43 (1992), 1-20. crossref(new window)