JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Pure and Applied Mathematics
  • Volume 22, Issue 2,  2015, pp.185-197
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/jksmeb.2015.22.2.185
 Title & Authors
STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES
LEE, BYUNG-SOO;
  PDF(new window)
 Abstract
The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].
 Keywords
convex structure;convex cone metric space;Noor-type iteration;f- expansive mapping;asymptotically f-expansive mapping;asymptotically quasi-f-expansive map- ping;f-uniformly quasi-sup(f)-Lipschitzian mapping.;
 Language
English
 Cited by
 References
1.
S.S. Chang, L. Yang & X.R. Wang: Stronger convergence theorem for an infinite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. Appl. Math. Comput. 217 (2010,) 277-282. crossref(new window)

2.
Y.J. Cho, H.Y. Zhou & G. Guo: Weak and strong convengence theorems for three-step iteration with errors for asymptotically nonexpansive mappings. Comput. Math. Appl. 47 (2004), 707-717. crossref(new window)

3.
Hafiz Fukhar-ud-din & Safeer Hussin Khan: Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications. J. Math. Anal. Appl. 328 (2007), 821-829. crossref(new window)

4.
L.-G. Huang & X. Zhang: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 322 (2007), 1468-1476.

5.
N.J. Huang & Y.J. Cho: Fixed point theorems of compatiable mappings in convex metric spaces. Soochow J. Math. 22 (1996), 439-447.

6.
A.R. Khan & M.A. Ahmed: Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications. Com. Math. Appl. 59 (2010), no. 8, 2990-2995. crossref(new window)

7.
A.R. Khan, A.A. Domlo & H. Fukhar-ud-din: Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 341 (2008), 1-11. crossref(new window)

8.
B.-S. Lee: Approximating common fixed points of two sequences of uniformly quasiLipschitziammappings in convex cone metric spaces. Univ. J. Appl. Math. 1 (2013), no. 3, 166-171.

9.
Q.Y. Liu, Z.B. Liu & N.J. Huang: Approximating the common fixed points of two sequencesof uniformly quasi-Lipschitzian mappings in convex metric spaces. Appl. Math. Comput. 216 (2010), 883-889. crossref(new window)

10.
K. Nammanee & S. Suantai: The modified Noor iterations with errors for nonLipschitzianmappings in Banach spaces. Appl. Math. Comput. 187 (2007), 669-679. crossref(new window)

11.
M.A. Noor: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251 (2000), 217-229. crossref(new window)

12.
______: Some developments on general variational inequalities. Appl. Math. Comput. 152 (2004), 199-277. crossref(new window)

13.
M.A. Noor & Z. Huang: Three-step methods for nonexpansive mappings and variational inequalities. Appl. Math. Comput. 187 (2007), 680-685. crossref(new window)

14.
S. Suantai: Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings. J. Math. Anal. Appl. 311 (2005), 506-517. crossref(new window)

15.
W. Takahashi: A convexity in metric space and nonexpansive mappings. Kodai. Math. Rep. 22 (1970), 142-149. crossref(new window)

16.
Y.X. Tian: Convergence of an Ishikawa type iterative scheme for asymptotically quasinonexpansive mappings. Comput. Math. Appl. 49 (2005), 1905-1912. crossref(new window)

17.
Y.X. Tian & C.D. Yang: Convergence theorems of three-step iterative scheme for a finite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. Fixed Point Theory and Applications 2009, Article ID 891967, 12pages.

18.
C. Wang & L.W. Liu: Convergence theorems for fixed points of uniformly quasiLipschizian mappings in convex metric spaces. Nonlinear Anal. TMA 70 (2009), 2067-2071. crossref(new window)

19.
C. Wang, J.H. Zhu, B. Damjanovic & L.G. Hu: Approximating fixed points of a pair of contractive type mappings in generalized convex metric spaces. Appl. Math. Comput. 215 (2009), 1522-1525. crossref(new window)

20.
B. Xu & M.A. Noor: Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 267 (2002), 444-453. crossref(new window)

21.
Y. Yao & M.A. Noor: Convergence of three-step iteration for asymptotically nonexpansive mappings. Appl. Math. Comput. 187 (2007), 883-892. crossref(new window)