JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BOUNDEDNESS IN NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Pure and Applied Mathematics
  • Volume 22, Issue 3,  2015, pp.215-227
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/jksmeb.2015.22.3.215
 Title & Authors
BOUNDEDNESS IN NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY
GOO, YOON HOE;
  PDF(new window)
 Abstract
In this paper, we investigate bounds for solutions of nonlinear functional differential systems using the notion of t-similarity.
 Keywords
h-stability;t-similarity;perturbed functional differential system;
 Language
English
 Cited by
 References
1.
V. M. Aleksee: An estimate for the perturbations of the solutions of ordinary differential equations.Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36 (Russian).

2.
F. Brauer: Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl. 14 (1966), 198-206. crossref(new window)

3.
S.K. Choi & H.S. Ryu: h−stability in differential systems. Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.

4.
S.K. Choi, N.J. Koo & H.S. Ryu: h-stability of differential systems via t-similarity. Bull. Korean. Math. Soc. 34 (1997), 371-383.

5.
R. Conti: Sulla t-similitudine tra matricie l’equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma 8 (1957), 43-47.

6.
Y.H. Goo: Boundedness in the functional nonlinear perturbed differential systems. J. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 22 (2015), 101-112.

7.
______: h-stability of perturbed differential systems via t-similarity. J. Appl. Math. and Informatics 30 (2012), 511-516.

8.
______: Boundedness in the perturbed differential systemsJ. Korean Soc. Math. Edu. Ser.B: Pure Appl. Math. 20 (2013), 223-232.

9.
Y.H. Goo, D.G. Park & D.H. Ryu: Boundedness in perturbed differential systems. J. Appl. Math. and Informatics 30 (2012), 279-287.

10.
G.A. Hewer: Stability properties of the equation by t-similarity. J. Math. Anal. Appl. 41 (1973), 336-344. crossref(new window)

11.
V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol.. Academic Press, New York and London, 1969.

12.
B.G. Pachpatte: On some retarded inequalities and applications. J. Ineq. Pure Appl. Math. 3 (2002), 1-7.

13.
M. Pinto: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), 161-175.

14.
______: Stability of nonlinear differential systems. Applicable Analysis 43 (1992), 1-20. crossref(new window)