JOURNAL BROWSE
Search
Advanced SearchSearch Tips
JACOBI-TRUDI TYPE FORMULA FOR PARABOLICALLY SEMISTANDARD TABLEAUX
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Pure and Applied Mathematics
  • Volume 22, Issue 3,  2015, pp.245-261
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/jksmeb.2015.22.3.245
 Title & Authors
JACOBI-TRUDI TYPE FORMULA FOR PARABOLICALLY SEMISTANDARD TABLEAUX
KIM, JEE-HYE;
  PDF(new window)
 Abstract
The notion of a parabolically semistandard tableau is a generalisation of Young tableau, which explains combinatorial aspect of various Howe dualities of type A. We prove a Jacobi-Trudi type formula for the character of parabolically semistandard tableaux of a given generalised partition shape by using non-intersecting lattice paths.
 Keywords
Schur function;Jacobi-Trudi formula;Howe duality;Young tableaux;
 Language
English
 Cited by
 References
1.
S.-J. Cheng & N. Lam: Infinite-dimensional Lie superalgebras and hook Schur functions. Comm. Math. Phys. 238 (2003) 95-118. crossref(new window)

2.
S.-J. Cheng, N. Lam & R.B. Zhang: Character formula for infinite-dimensional unitarizable modules of the general linear superalgebra. J. Algebra 273 (2004) 780-805. crossref(new window)

3.
S.-J. Cheng & W. Wang: Lie subalgebras of differential operators on the super circle. Publ. Res. Inst. Math. Sci. 39 (2003) 545-600. crossref(new window)

4.
______: Dualities and Representations of Lie Superalgebras. Graduate Studies in Mathematics 144. American Mathematical Society, Providence, RI, 2012.

5.
I.B. Frenkel: Representations of Kac-Moody algebras and dual resonance models in Applications of group theory in physics and mathematical physics. Lectures in Appl. Math. 21 325-353, AMS, Providence, 1985.

6.
W. Fulton: Young tableaux, with Application to Representation theory and Geometry. Cambridge Univ. Press, 1997.

7.
I. Gessel & G. Viennot: Binomial determinants, paths, and hook length formulae. Adv. Math. 58 (1985) 300-321. crossref(new window)

8.
R. Howe: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313 (1989) 539-570. crossref(new window)

9.
V.G. Kac: Infinite-dimensional Lie algebras. Third edition, Cambridge University Press, Cambridge, 1990.

10.
V.G. Kac & A. Radul: Representation theory of the vertex algebra W1+∞. Transform. Groups 1 (1996) 41-70. crossref(new window)

11.
M. Kashiwara & M. Vergne: On the Segal-Shale-Weil representations and harmonic polynomials. Invent. Math. 44 (1978) 1-47. crossref(new window)

12.
J.-H. Kwon: Rational semistandard tableaux and character formula for the Lie superalgebra . Adv. Math. 217 (2008) 713–739. crossref(new window)

13.
______: A combinatorial proof of a Weyl type formula for hook Schur polynomials. J. Algber. Comb. 28 (2008) 439-459. crossref(new window)

14.
J.-H. Kwon & E.-Y. Park: Duality on Fock spaces and combinatorial energy functions. J. Combin. Theory Ser. A 134 (2015) 121-146. crossref(new window)

15.
I.G. Macdonald: Symmetric functions and Hall polynomials. Oxford University Press, 2nd ed., 1995.

16.
R.P. Stanley: Enumerative Combinatorics. vol. 2, Cambridge University Press, 1998.