JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Pure and Applied Mathematics
  • Volume 22, Issue 3,  2015, pp.275-283
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/jksmeb.2015.22.3.275
 Title & Authors
SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC OPERATORS
SHEN, JUNKI; ZUO, FEI;
  PDF(new window)
 Abstract
Let T be a bounded linear operator on a complex Hilbert space H. For a positive integer k, an operator T is said to be a k-quasi-2-isometric operator if T∗k(T∗2T2 − 2TT + I)Tk
 Keywords
k-quasi-2-isometric operator;polaroid;generalized Weyl’s theorem.;
 Language
English
 Cited by
 References
1.
J. Agler: A disconjugacy theorem for Toeplitz operators. Amer. J. Math. 112 (1990), no. 1, 1-14. crossref(new window)

2.
J. Agler & M. Stankus: m-isometric transformations of Hilbert space. I. Integral Equ. Oper. Theory 21 (1995), no. 4, 383-429. crossref(new window)

3.
T. Bermudez, A. Martinon & E. Negrin: Weighted shift operators which are m-isometry. Integral Equ. Oper. Theory 68 (2010), 301-312. crossref(new window)

4.
M. Berkani & A. Arroud: Generalized Weyl’s theorem and hyponormal operators. J. Austra. Math. Soc. 76 (2004), no. 2, 291-302. crossref(new window)

5.
M. Berkani & J.J. Koliha: Weyl type theorems for bounded linear operators. Acta Sci. Math.(Szeged) 69 (2003), no. 1-2, 359-376.

6.
M. Berkani & M. Sarih: On semi B-Fredholm operators. Glasgow Math. J. 43 (2001), no. 3, 457-465.

7.
M. Chō, S. Ôta, & K. Tanahashi: Invertible weighted shift operators which are m-isometries. Proc. Amer. Math. Soc. 141 (2013), no. 12, 4241-4247. crossref(new window)

8.
M. Chō, S. Ôta, K. Tanahashi & A. Uchiyama: Spectral properties of m-isometric operators. Funct. Anal. Approx. Comput. 4 (2012), no. 2, 33-39.

9.
B.P. Duggal: Tensor product of n-isometries. Linear Algebra Appl. 437 (2012), 307-318. crossref(new window)

10.
______: Polaroid operators, SVEP and perturbed Browder, Weyl theorems. Rendiconti Circ Mat di Palermo LVI 56 (2007), 317-330. crossref(new window)

11.
J.K. Han & H.Y. Lee: Invertible completions of 2∗2 upper triangular operator matrices. Proc. Amer. Math. Soc. 128 (1999), 119-123.

12.
R.E. Harte & W.Y. Lee: Another note on Weyl’s theorem. Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124. crossref(new window)

13.
K.B. Laursen & M.M. Neumann: Introduction to Local Spectral Theory. Clarendon Press, Oxford, 2000.

14.
S.M. Patel: 2-isometry operators. Glasnik Mat. 37 (2002), no. 57, 143-147.

15.
M.A. Rosenblum: On the operator equation BX − XA = Q. Duke Math. J. 23 (1956), 263-269. crossref(new window)