JOURNAL BROWSE
Search
Advanced SearchSearch Tips
UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY IN PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Pure and Applied Mathematics
  • Volume 23, Issue 1,  2016, pp.1-12
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/jksmeb.2016.23.1.1
 Title & Authors
UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY IN PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS
CHOI, SANG IL; GOO, YOON HOE;
  PDF(new window)
 Abstract
This paper shows that the solutions to the perturbed differential system $y^{\prime}
 Keywords
uniformly Lipschitz stability;uniformly Lipschitz stability in variation;exponentially asymptotic stability;exponentially asymptotic stability in variation;
 Language
English
 Cited by
 References
1.
V.M. Alekseev: An estimate for the perturbations of the solutions of ordinary differential equations.Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).

2.
F. Brauer: Perturbations of nonlinear systems of differential equations.J. Math. Anal. Appl. 14 (1966), 198-206. crossref(new window)

3.
S.I. Choi & Y.H. Goo: Lipschitz and asymptotic stability for nonlinear perturbed differential systems. J. Chungcheong Math. Soc. 27 (2014)

4.
S.I. Choi & Y.H. Goo: Boundedness in perturbed nonlinear functional differential systems. J. Chungcheong Math. Soc. 28 (2015), 217-228. crossref(new window)

5.
S.I. Choi & Y.H. Goo : Lipschitz and asymptotic stability of nonlinear systems of perturbed differential equations. Korean J. Math. 23 (2015), 181-197. crossref(new window)

6.
S.K. Choi, Y.H. Goo & N.J. Koo: Lipschitz and exponential asymptotic stability fornonlinear functional systems. Dynamic Systems and Applications 6 (1997), 397-410.

7.
S.K. Choi , N.J. Koo & S.M. Song: Lipschitz stability for nonlinear functional differential systems. Far East J. Math. Sci(FJMS) 5 (1999), 689-708.

8.
F.M. Dannan & S. Elaydi: Lipschitz stability of nonlinear systems of differential systems. J. Math. Anal. Appl. 113 (1986), 562-577. crossref(new window)

9.
S. Elaydi & H.R. Farran: Exponentially asymptotically stable dynamical systems. Appl. Anal. 25 (1987), 243-252. crossref(new window)

10.
P. Gonzalez and M. Pinto: Stability properties of the solutions of the nonlinear functional differential systems.J. Math. Appl. 181(1994), 562-573.

11.
Y.H. Goo: Lipschitz and asymptotic stability for perturbed nonlinear differential systems. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 11-21.

12.
Y.H. Goo: Perturbations in nonlinear perturbed differential systems. Far East J. Math. Sci(FJMS) 98 (2015), 671-687. crossref(new window)

13.
D.M. Im & Y.H. Goo: Asymptotic property for perturbed nonlinear functional differential systems. J. Appl. Math. and Informatics 33 (2015), 687-697. crossref(new window)

14.
V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol. I. Academic Press, New York and London, 1969.

15.
B.G. Pachpatte: Stability and asymptotic behavior of perturbed nonlinear systems. J. Math. Anal. Appl. 16 (1974), 14-25.

16.
B.G. Pachpatte: Perturbations of nonlinear systems of differential equations. J. Math. Anal. Appl. 51 (1975), 550-556. crossref(new window)