JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN IMPROVED LOWER BOUND FOR SCHWARZ LEMMA AT THE BOUNDARY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Pure and Applied Mathematics
  • Volume 23, Issue 1,  2016, pp.61-72
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/jksmeb.2016.23.1.61
 Title & Authors
AN IMPROVED LOWER BOUND FOR SCHWARZ LEMMA AT THE BOUNDARY
ORNEK, BULENT NAFI; AKYEL, TUGBA;
  PDF(new window)
 Abstract
In this paper, a boundary version of the Schwarz lemma for the holom- rophic function satisfying f(a) = b, |a| < 1, b ∈ ℂ and ℜf(z) > α, 0 ≤ α < |b| for |z| < 1 is invetigated. Also, we estimate a modulus of the angular derivative of f(z) function at the boundary point c with ℜf(c) = a. The sharpness of these inequalities is also proved.
 Keywords
angular derivative;holomorphic function;Schwarz lemma on the boundary;
 Language
English
 Cited by
 References
1.
H.P. Boas: Julius and Julia: Mastering the Art of the Schwarz lemma. Amer. Math. Monthly 117 (2010), 770-785. crossref(new window)

2.
D. Chelst: A generalized Schwarz lemma at the boundary. Proc. Amer. Math. Soc. 129 (2001), 3275-3278. crossref(new window)

3.
V.N. Dubinin: The Schwarz inequality on the boundary for functions regular in the disc. J. Math. Sci. 122 (2004), 3623-3629. crossref(new window)

4.
V.N. Dubinin: Bounded holomorphic functions covering no concentric circles. J. Math. Sci. 207 (2015), 825-831. crossref(new window)

5.
G.M. Golusin: Geometric Theory of Functions of Complex Variable [in Russian]. 2nd edn., Moscow 1966.

6.
M. Jeong: The Schwarz lemma and its applications at a boundary point. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 275-284.

7.
M. Jeong: The Schwarz lemma and boundary fixed points. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), 219-227.

8.
D.M. Burns & S.G. Krantz: Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J. Amer. Math. Soc. 7 (1994), 661-676. crossref(new window)

9.
X. Tang & T. Liu: The Schwarz lemma at the boundary of the egg domain Bp1,p2 in ℂn. Canad. Math. Bull. 58 (2015), 381-392. crossref(new window)

10.
X. Tang, T. Liu & J. Lu: Schwarz lemma at the boundary of the unit polydisk in ℂn. Sci. China Math. 58 (2015), 1-14.

11.
M. Mateljević: The lower bound for the modulus of the derivatives and Jacobian of harmonic injective mappings. Filomat 29:2 (2015), 221-244. crossref(new window)

12.
M. Mateljević: Distortion of harmonic functions and harmonic quasiconformal quasi-isometry. Revue Roum. Math. Pures Appl. 51 (2006) 56, 711-722.

13.
M. Mateljević: Ahlfors-Schwarz lemma and curvature. Kragujevac J. Math. 25 (2003), 155-164.

14.
M. Mateljević: Note on rigidity of holomorphic mappings & Schwarz and Jack lemma (in preparation). ResearchGate.

15.
R. Osserman: A sharp Schwarz inequality on the boundary. Proc. Amer. Math. Soc. 128 (2000), 3513-3517. crossref(new window)

16.
T. Aliyev Azeroğlu & B.N. Örnek: A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations 58 (2013), 571-577. crossref(new window)

17.
B.N. Örnek: Sharpened forms of the Schwarz lemma on the boundary. Bull. Korean Math. Soc. 50 (2013), 2053-2059. crossref(new window)

18.
Ch. Pommerenke: Boundary behaviour of conformal maps. Springer-Verlag, Berlin, 1992.

19.
M. Elin, F. Jacobzon, M. Levenshtein & D. Shoikhet: The Schwarz lemma: Rigidity and Dynamics. Harmonic and Complex Analysis and its Applications. Springer International Publishing, (2014), 135-230.

20.
H. Unkelbach: Uber die Randverzerrung bei konformer Abbildung. Math. Z. 43 (1938), 739-742. crossref(new window)