JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMMON FIXED POINT THEOREMS OF MEIR-KEELER TYPE ON MULTIPLICATIVE METRIC SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Pure and Applied Mathematics
  • Volume 23, Issue 2,  2016, pp.131-143
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/jksmeb.2016.23.2.131
 Title & Authors
COMMON FIXED POINT THEOREMS OF MEIR-KEELER TYPE ON MULTIPLICATIVE METRIC SPACES
DESHPANDE, BHAVANA; SHEIKH, SAJAD AHMAD;
  PDF(new window)
 Abstract
In this paper, we present some common fixed point theorems for two pairs of weakly compatible self-mappings on multiplicative metric spaces satisfying a generalized Meir-Keeler type contractive condition. The results obtained in this paper extend, improve and generalize some well known comparable results in literature.
 Keywords
weak compatible mappings;multiplicative metric space;common property (E.A);(JCLR) property;common fixed points;Meir-Keeler type contractive condition;
 Language
English
 Cited by
 References
1.
M. Aamri & D. El Moutawakil: Some new common fixed point theorems under strict contractive conditions. J. Math. Anal. Appl. 270 (2002), no. 1, 181-188 . crossref(new window)

2.
M. Abbas, I. Altun & D. Gopal: Common fixed point theorems for non compatible mappings in fuzzy metric spaces. Bull. Math. Anal. Appl. 1 (2009), no. 2, 47-56.

3.
S. Banach: Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fundam. Math. 3 (1922), 133-181.

4.
A.E. Bashirov, E.M. Kurplnara & A. Ozyapici: Multiplicative calculus and its applicatiopns. J. Math. Anal. Appl. 337 (2008), 36-48. crossref(new window)

5.
H. Bouhadjera & A. Djoudi: On fixed point theorems of Meir and Killer type. An. St. Univ. Ovidius Constanta. 16 (2008), no. 2, 39-46.

6.
S. Chauhan, W. Sintunavarat & P. Kumam: Common Fixed point theorems for weakly compatible mappings in fuzzy metric spaces using (JCLR) property. Applied Mathematics 3 (2012), no. 9, 976-982. crossref(new window)

7.
F. Gu & Y.J. Cho: Common fixed point results for four maps satisfying ϕ-contractive condition in multiplicative metric spaces. Fixed Point Theory Appl. DOI:10.1186/s13663-015-0412-4. crossref(new window)

8.
K. Jha, R. Pant & S.L. Singh: Common fixed point for compatible mappings in metric spaces. Radovi Mat. 12 (2003), 107-114.

9.
G. Jungck: Common fixed points for noncontinuous nonself maps on non-metric spaces. Far East J. Math. Sci. 4 (1996), 199-215.

10.
______: Commuting mappings and fixed points. Am. Math. Mon. 73 (1976), 261-263.

11.
______: Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 9 (1986), no. 4, 771-779. crossref(new window)

12.
W. Lui, J. Wu & Z. Li: Common fixed points of single-valued and multi-valued maps. Int. J. Math. Sci. 19 (2005), 3045-3055.

13.
M. Maiti & T.K. Pal: Generalizations of two fixed point theorems. Bull. Calcutta Math. Soc. 70 (1978), 57-61.

14.
A. Meir & E. Keeler: A theorem on contraction mappings. J. Math. Anal. Appl. 28 (1969), 326-329. crossref(new window)

15.
M. Ozavsar & A.C. Cevikel: Fixed points of multiplicative contraction mappings on multiplicative metric spaces. arXiv:1205.5131v1 [math.GM], 2012.

16.
R.P. Pant & K. Jha: A generalization of Meir-Keeler type common fixed point for four mappings. J. Natural and Physical Sciences 16 (2002), no. 1-2, 77-84.

17.
______: A generalization of Meir-Keeler type fixed point theorems for four mappings. Ultra Science 15 (2003), no. 1, 97-102.

18.
S. Park & B.E. Rhoades: Meir-Keeler contractive conditions. Math. Japonica 26 (1981), no. 1, 13-20.

19.
V. Popa: A general common fixed point theorem of Meir and Killer type for non continuous weak compatible mappings. Filomat (Nis). 18 (2004), 33-40.

20.
J.H.N. Rao & K.P.R. Rao: Generalizations of fixed point theorem of Meir and Keeler type. Indian J. Pure Appl. Math. 16 (1985), no. 1, 1249-1262.

21.
S. Sessa: On a weak commutativity condition of mappings in fixed point consideration. Publ. Inst. Math. Soc. 32 (1982), 149-153.